Skip to main content
Log in

Platinum nitride Pt4N compound: first principles investigations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper highlights the application of first principle calculations based on density functional theory calculations to study platinum nitride properties of the formula Pt4N. It is well known that technological properties of surface layers may be significantly modified by the use of nitrides. In fact, the structural and thermodynamical stabilities of Pt4N compound have been established first and the elastic and electronic properties have been investigated second. Between seven crystallographic phases studied, the cubic structure with space group P43m (No. 215) was found to be the most structurally and thermodynamically stable one. The structural parameters, bulk moduli and their first pressure derivatives were determined for all studied structures. Practically, all the studied phases were found to be nonmagnetic; this is due to the fact that the platinum compound is non-magnetic. For the ground-state of Pt4N-structure, all crystalline elastic constants (in the equilibrium and under hydrostatic pressure), the Young moduli, as well as homogenized polycrystalline elastic moduli (obtained by different homogenization methods) were predicted. The ground-state structure of the Pt4N compound is found mechanically stable and considered to be ductile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E Menthe, A Bulak and J Olfe Coat. Technol. 133 259 (2000)

    Article  Google Scholar 

  2. L Zagonel, C Figueroa, R J Droppa and F Alvarez Surf. Coat. Technol. 201 452 (2006)

    Article  Google Scholar 

  3. B Larisch Coat. Technol. 116 205 (1999)

    Article  Google Scholar 

  4. L Zagonel Coat. Technol. 200 2566 (2005)

    Article  Google Scholar 

  5. E Gregoryanz et al. Nature Mater. 3 294 (2004)

    Article  ADS  Google Scholar 

  6. R Yu and X F Zhang Appl. Phys. Lett. 86 121913 (2005)

    Article  ADS  Google Scholar 

  7. A F Goncharov and J C Crowhurst J. Low Temp. Phys. 139 727 (2005)

    Article  ADS  Google Scholar 

  8. B R Sahu and L Kleinman Phys. Rev. B 72 119901 (2005)

    Article  ADS  Google Scholar 

  9. R Yu and X F Zhang Phys. Rev. B 72 054103 (2005)

    Article  ADS  Google Scholar 

  10. J Uddin and G E Scuseria Phys. Rev. B 72 119902(E) (2005)

    Article  ADS  Google Scholar 

  11. C Z Fan, L L Sun, Y X Wang, Z J Wei and R P Liu Lett. 22 2637 (2005)

    Google Scholar 

  12. M B Kanoun and S Goumri-Said Phys. Rev. B 72 113103 (2005)

    Article  ADS  Google Scholar 

  13. S Krebs and E Robert Platinum: The History and Use of our Earth’s Chemical Elements (Westport: Green wood Press) (1998)

    Google Scholar 

  14. G F Smith and J L Gring J. Am. Chem. Soc. 55 3957 (1933)

    Article  Google Scholar 

  15. A E Schweizer and G T Kerr Inorg. Chem. 17 2326 (1978)

    Article  Google Scholar 

  16. G B Kauffman, J J Thurner and D A Zatko Inorg. Syntheses 9 182 (1967)

    Article  Google Scholar 

  17. J J Lagowski Chemistry Foundations and Applications (3 Ed. Thomson Gale. 267 (2004)

  18. D L Perry Handbook of Inorganic Compounds (New York: CRC Press) (1995)

    Google Scholar 

  19. Y Han, H V Huynh and G K Tan Organometallics 26 4612 (2007)

    Article  Google Scholar 

  20. S Ahrens and T Strassner Inorganica Chimca Acta 359 4789 (2006)

    Article  Google Scholar 

  21. A Karpov, M Konuma and M Jansen Chem. Commun. 8 838 (2006)

    Article  Google Scholar 

  22. A Karpov, J Nuss, U Wedig and M Jansen Angewandte Chemie Int. Edn. 42 4818 (2003)

    Article  Google Scholar 

  23. M Jansen Solid State Sci. 7 1464 (2005)

    Article  ADS  Google Scholar 

  24. J Ghilane, C Lagrost, M Guilloux-Viry and J Simonet J. Phys. Chem. C 111 5701 (2007)

    Article  Google Scholar 

  25. A D Richards and A Rodger Chem. Soc. Rev. 36 471 (2007)

    Article  Google Scholar 

  26. L E Toth Transition Metal Carbides and Nitrides (New York: Academic Press) (1971)

    Google Scholar 

  27. H Pierson Handbook of Refractory Carbides and Nitrides: Properties Characteristics and Applications (Westwood: Noyes Publications) (1996)

    Google Scholar 

  28. R Yu Phys Lett. 88 051913 (2006)

    Google Scholar 

  29. W B A Pearson Handbook of Lattice Spacings and Structures of Metals and Alloys (Oxford: Pergamon Press) (1967)

    Google Scholar 

  30. P Hemzalová, M Friák, M Šob, D Ma and A Udyansky Phys. Rev. B. 88 174103 (2013)

    Article  ADS  Google Scholar 

  31. Y Kong, J Pelzl and F Li J. Magn. Magn. Mater. 195 483 (1999)

    Article  ADS  Google Scholar 

  32. J Guo, F Pan, M Feng and R Guo J. Appl. Phys. 80 1623 (1996)

    Article  ADS  Google Scholar 

  33. J Kim, J Je and J Lee J. Electrochem. Soc. 147 4645 (2000)

    Article  ADS  Google Scholar 

  34. J Kim, J Je, J Lee, Y Park, T Kim and I Jung J. Electron. Mater. 30 8 (2001)

    Article  Google Scholar 

  35. C Kim, J Kim, J Lee, J Je, M Yi and D Noh Status Solidi A 188 379 (2001)

    Article  ADS  Google Scholar 

  36. R Valencia, R Lopez-Callejas, A Munoz-Castro and S Barocio J. Phys. 34 1594 (2004)

    Google Scholar 

  37. H Savaloni and M Habibi Appl. Surf. Sci. 258 103 (2011)

    Article  ADS  Google Scholar 

  38. G Huiyang et al. Rev. Lett. 111 157002 (2013)

    Article  Google Scholar 

  39. P N Terao J. Phys. Soc. Jpn. 15 227 (1960)

    Article  ADS  Google Scholar 

  40. M Elstnerová, M S Friák and J Neugebauer I Dlouhý. (eds.) J Švejcar and M Šob (Czech Academy of Sciences, Brno: Institute of Physics of Materials) (2011) (in Czech)

    Google Scholar 

  41. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)

    Article  ADS  Google Scholar 

  42. W Kohn and L J Sham Phys. Rev. A 140 1133 (1965)

    Article  ADS  Google Scholar 

  43. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2k An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz Technology Universität Wien) (2001)

    Google Scholar 

  44. D J Singh Planewaves, Pseudopotentials and the LAPW Method (New York: Kluwer Academic) (1994)

    Book  Google Scholar 

  45. E Sjöstedt, L Nordström and D J Singh Solid State Commun. 114 15 (2000)

    Article  ADS  Google Scholar 

  46. P E Blöchl Rev. B 49 16223 (2000)

    Article  Google Scholar 

  47. J P Perdew Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  48. F D Murnaghan Proc. Natl. Acad. Sci. 30 5390 (1944)

    Google Scholar 

  49. D Holec and F Rovere Scr. Mater. 62 349 (2010)

    Article  Google Scholar 

  50. N W Ashcroft and N D Mermin Solid State Physics (New York: Holt Rinehart and Winston) (1976)

    MATH  Google Scholar 

  51. O K Andersen Phys. Rev. B 2 4 (1970)

    Article  Google Scholar 

  52. B R Sahu and L Kleinman Phys. Rev. B 71 041101(R) (2005)

    Article  ADS  Google Scholar 

  53. J C Crowhurst et al. Science 311 1275 (2006)

    Article  ADS  Google Scholar 

  54. Z Liu, H Wang, J Sun, R Sun, Z F Wang and J Yang Nanoscale. (2018). https://doi.org/10.1039/C8NR05561K

    Article  Google Scholar 

  55. L C Zhou et al. Phys. Rev. B 90 197 (2014)

    Google Scholar 

  56. B Alling, T Marten and I A Abrikosov Phys. Rev. B 82 184430 (2010)

    Article  ADS  Google Scholar 

  57. V Adhikari, Z T Y Liu, N J Szymanski, I Khatri, D Gall and P Sarin J. Phys. Chem. Sol. 120 197–206 (2018)

    Article  ADS  Google Scholar 

  58. S M Foiles Rev. B 12 33 (1986)

    Google Scholar 

  59. S F Pugh The London, Edinburgh, Dublin Philos. Magaz. J. Sci. 45 367 823 (1954)

    Article  Google Scholar 

  60. D G Pettifor Mater. Sci. Technol. 8 345 (1992)

    Article  ADS  Google Scholar 

  61. D Nguyen-Manh Mater. Sci. 52 255 (2007)

    Google Scholar 

  62. J Wang, J Li and S Yip Rev. B 52 12627 (1995)

    Article  Google Scholar 

  63. J W Morris and C R Krenn Philos. Mag. A 80 2827 (2000)

    Article  ADS  Google Scholar 

  64. J Pokluda, M Černý, P Šandera and M Šob J. Comput. Aided Mol. Des. 11 1 2531 (2004)

    Google Scholar 

  65. R Hill and F Milstein Phys. Rev. B 15 3087 (1977)

    Article  ADS  Google Scholar 

  66. J L Costa-Krämer, D M Borsa, J M García-Martín and M S Martín-González Rev. B 69 144402 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Algerian Directorate-General for Scientific Research and Technological Development (DGRSDT).

We thank Mrs. Leila KIES, teacher at KIES school of Saïda (Algeria) for her contribution to correct the English of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellahcene, N., Dahani, A., Djermouni, M. et al. Platinum nitride Pt4N compound: first principles investigations. Indian J Phys 97, 2917–2926 (2023). https://doi.org/10.1007/s12648-023-02634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02634-x

Keywords

Navigation