Skip to main content
Log in

Theoretical analysis of structural stability and allied properties of new brittle perovskites: RbTaO3 and RbNbO3

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, electronic, elastic and thermodynamic properties of cubic Rb-based perovskite materials RbTaO3 and RbNbO3 have been explored. All these properties are studied by means of the FP-LAPW method employed in density functional theory. To predict the structural stability, we have employed GGA schemes and concluded that both materials are more stable with the least energy. The ground-state properties like lattice parameter, unit cell volume, bulk modulus and pressure derivative of bulk modulus are computed, and it is verified that our GGA lattice parameters are well-matched with available experimental lattice parameters. Band structures of both materials predict the indirect bandgap of 2.19 and 1.6 eV for RbTaO3 and RbNbO3 respectively, promoting their semiconductor nature. The band gap calculations under different pressures manifest a surge in band gaps with pressure. The bonding nature is also estimated by the density of states and charge density plots. Charge density plots confirm the ionic as well as covalent bonding amid Rb–O and Ta/Nb–O atoms. The high-pressure behaviour of elastic properties is also investigated by analysing various elastic parameters. The large hardness and stiffness of these materials, at high pressure, are also observed which make them modest materials for the fabrication of hard devices/instruments. The Pugh ratio, Poisson’s ratio and Cauchy relation approve the brittle behaviour of both compounds. The anisotropic nature of these materials has been observed at zero pressure and at high pressure as well. The detailed analysis of diverse thermodynamic quantities has also been conducted under high pressure and temperature. All these investigated properties are reported for the first time for RbTaO3, and very few data are available for RbNbO3 that are in fair compromise with present results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this article.

References

  1. C Li J. Alloys Compd. 372 40 (2004).

    Article  Google Scholar 

  2. R Terki and H Feraoun Status Solidi (B) 242 1054 (2005).

    Article  ADS  Google Scholar 

  3. S Cabuk, H Akkus and A M Mamedov Phys. B: Condens. Matter 394 81 (2007)

    Article  ADS  Google Scholar 

  4. H Wang, B Wang, R Wang and Q Li Phys. B: Condens. Matter 390 96 (2007)

    Article  ADS  Google Scholar 

  5. P Wagner, G Wackers and I Cardinaletti Status Solidi 214 1700394 (2017).

    Article  ADS  Google Scholar 

  6. D Glowienka, T Miruszewski and J Szmytkowski Solid State Sci. 82 19 (2018)

    Article  ADS  Google Scholar 

  7. V Adinolfi, W Peng, G Walters, O M Bakr and E H Sargen Adv. Mater. 30 1700764 (2018)

    Article  Google Scholar 

  8. W Li, and L-J Ji Science 361 132 (2018)

    Article  ADS  Google Scholar 

  9. M Imada, A Fujimori and Y Tokura Mod. Phys.70 1039 (1998)

    Article  ADS  Google Scholar 

  10. Y Tokura and N Nagaosa Science 288 462 (2000).

    Article  ADS  Google Scholar 

  11. S Fred and Hichernell IEEE 52 737 (2005)

  12. Y Tokura (ed.) Advances in Condensed Matter Science (The Netherlands: Gordan and Breach) Vol. 2 (2000). J. Scott Nat. Mater. 6 256 (2007)

  13. M Bibes and A Barthelemy Nat. Mater. 7 425 (2008).

    Article  ADS  Google Scholar 

  14. P Zubko, S Gariglio and M Gabay Rev. Condens. Matter Phys. 2 141 (2011).

    Article  ADS  Google Scholar 

  15. N C Bristowe, J Varignon, D Fontaine, E Bousquet and P Ghosez Nat. Commun. 6 6677 (2015)

    Article  ADS  Google Scholar 

  16. G A Smolenskii, N V Kozhevnikova and Dokl Akad. Nauk SSSR 76 519 (1951)

  17. H D Megaw Acta Cryst. 5 739 (1952)

    Article  Google Scholar 

  18. I E Castelli, D D Landis, K S Thygesen, S Dahl, I Chorkendorff, T F Jaramillo and K W Jacobsen Energy Environ. Sci. 5 9034 (2012)

    Article  Google Scholar 

  19. D F O’Kane, G Burns, E A Giess and B A Scott J. Electrochem. Soc. 116 1555 (1969).

    Article  ADS  Google Scholar 

  20. G Burns, E A Giess and D F O’Kane New ferro-electric materials and process of preparation, (U.S.) Patent No. 3, 640,865 (1972)

  21. K Fukuda, I Nakai, Y Ebina, R Ma and T Sasaki Inorg. Chem. 46 4787 (2007)

    Article  Google Scholar 

  22. M Serafin and R Hoppe J. Less Common Met. 76 299 (1980).

    Article  Google Scholar 

  23. M Serafin and R Hoppe Angewandte Chem. 90 387 (1978).

    Article  ADS  Google Scholar 

  24. M Serafin, R Hoppe and Z Anorg Allg. Chem. 464 240 (1980).

    Article  Google Scholar 

  25. A Reisman and F Holtzberg J. Phys. Chem. 64 748 (1960).

    Article  Google Scholar 

  26. H Brusset and H Gillier-Pandraud Res. Bull. 11 299 (1976).

    Article  Google Scholar 

  27. A I Lebedev Phys. Solid State 57 331 (2015).

    Article  ADS  Google Scholar 

  28. M Erzen and H Akkus Ferroelectrics 526 120 (2018). https://doi.org/10.1080/00150193.2018.1456302

    Article  ADS  Google Scholar 

  29. J A Kafalas, in Proc. of 5th Materials Research Symposium (National Bureau of Standards Special Publication) 364, pp 287–292 (1972)

  30. Z Wu and R E Cohen Phys. Rev. B 73 235116 (2006).

    Article  ADS  Google Scholar 

  31. P Blaha, K Schwarz, G K H Madsen, D Kuasnicke and J Luitz Introduction to WIEN2K, an Augmented Plane Wane Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, Austria) (2001)

  32. L Hedin and B I Lundqvist J. Phys. C4 2064 (1971).

    ADS  Google Scholar 

  33. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  34. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  35. F Birch J. Appl. Phys. 9 279 (1938)

    Article  ADS  Google Scholar 

  36. T Charpin A Package for Calculating Elastic Tensors of Cubic Phases Using WIEN, Laboratory of Geometrix F-75252 (Paris, France) (2001)

  37. W Voigt Ann. Phy. 274 573 (1889)

    Article  ADS  Google Scholar 

  38. A Reuss and Z Ang Math. Mech. 9 49 (1929).

    Google Scholar 

  39. R Hill Proc. Phys. Soc. Lond. 65 909 (1953)

    Google Scholar 

  40. Z Li and C Bradt J. Mater. Sci. 22 2557 (1987)

    Article  ADS  Google Scholar 

  41. Z Wan, Y Yu, H F Zhang, T Gao, X J Chen and C J Xiao Eur. Phys. J. 85 181 (2012)

    Article  ADS  Google Scholar 

  42. V Otero-de-la- Roza and Luaea Phys. Rev. B 84 184103 (2011)

  43. M A Blanco J. Mol. Struct. Theochem. 268 245 (1996).

    Article  Google Scholar 

  44. M Born and K Huang Dynamical Theory of Crystal Lattices (London: Oxford University Press) (1956)

    MATH  Google Scholar 

  45. Pugh SFXCII Philos. Mag. 45 823 (1954)

  46. D G Pettifor Mat. Sci. Tech. 8 345 (1992).

    Article  Google Scholar 

  47. V A Shukoor, M Sarwan and S Singh Phys. B: Condens. Matter 547 83 (2018)

    Article  ADS  Google Scholar 

  48. J Haines, J M Leger and G Bocquillon Annu. Rev. Mater. Sci. 311 (2001)

    Article  ADS  Google Scholar 

  49. A T Petit and P I Dulong Ann. Chem. Phys. 10 395 (1819).

    Google Scholar 

Download references

Acknowledgements

One of the authors (MS) is thankful to Prof. S. K. S. Yadav, Principal, Govt. College Harrai, Chhindwara (M.P.) India, for their continuous support and motivation during the work. Author (SS) is thankful to UGC for infrastructural grant under SAP.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MS contributed to methodology, software and visualization, writing–original draft; SS contributed to overall guidance and presentation of work.

Corresponding author

Correspondence to M. Sarwan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest. The authors declare that we have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwan, M., Singh, S. Theoretical analysis of structural stability and allied properties of new brittle perovskites: RbTaO3 and RbNbO3. Indian J Phys 97, 2061–2076 (2023). https://doi.org/10.1007/s12648-022-02557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02557-z

Keywords

Navigation