Skip to main content
Log in

First-principles study of properties of X3Sb2Au3 (X = K, Rb) ternary compounds for photovoltaic applications

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this work, the structural, electronic, elastic, and optical properties of X3Sb2Au3 (X = K, Rb) ternary compounds have been investigated using the density-functional theory method as implemented in the quantum espresso package. The generalized gradient approximation has been adopted in performing the calculations. The computed lattice parameters have been found to be in agreement with the available experimental and theoretical results. The K3Sb2Au3 and Rb3Sb2Au3 compounds have been found to be semiconductors with direct bandgaps of 1.236 eV and 1.353 eV, respectively. The compounds have also been found to be mechanically stable at zero pressure, ductile, and nearly metallic and therefore possess suitable attributes for industrial applications. The complex dielectric functions, absorption coefficients, reflectivity, refractive index, and energy loss spectra have also been presented. Refractive indices of 3.41 and 3.11 for K3Sb2Au3 and Rb3Sb2Au3 have also been calculated. The high refractive indices, high absorption coefficients, as well as the wide energy coverage of the absorption spectra, mostly in the ultraviolet–visible (UV–Vis) regions make the K3Sb2Au3 and Rb3Sb2Au3 compounds excellent UV–Vis light absorbers which are some of the essential characteristics for materials for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y Zhong, H Mei, D He and X Du J. Phys. Chem. Solids 134 157 (2019)

    Article  ADS  Google Scholar 

  2. K Khan, A Gaur, A Soni, U Ahuja, and J Sahariya Proc. B-HTC 2020 - 1st IEEE Bangalore Humanit. Technol. Conf. p 1 (2020)

  3. H Singh and M Singh AIP Conf. Proc. 1349 1069 (2011)

    Article  ADS  Google Scholar 

  4. A Es-Smairi, N Fazouan and H Joshi J. Phys. Chem. Solids 160 110305 (2022)

    Article  Google Scholar 

  5. A Gani, O Cheref and M Ghezali Chin. J. Phys. 64 174 (2020)

    Article  Google Scholar 

  6. M Irfan and S Azam Int. J. Energy Res. 45 2980 (2021)

    Article  Google Scholar 

  7. R Li, X Li, L Xi, J Yang and D J Singh ACS Appl. Mater. Interfaces 11 24859 (2019)

    Article  Google Scholar 

  8. M W Iqbal, M Asghar and N A Noor Phys. Scr. 96 125706 (2021)

    Article  ADS  Google Scholar 

  9. N Si Ziani, H Bouhani-Benziane, M Baira, A Belfedal, and M Sahnoun Lecture Notes in Networks and Systems (Springer International Publishing) 62 552 (2019)

  10. Q Fan, J Yang and Q Fan R. Soc. Open Sci. 4 170750 (2017)

    Article  Google Scholar 

  11. M Z Rahaman and M A Islam J. Supercond. Nov. Magn. 34 1133 (2021)

    Article  Google Scholar 

  12. S Fahad, G Murtaza and T Ouahrani J. Alloys Compd. 646 211 (2015)

    Article  Google Scholar 

  13. Sibghat-Ullah, G Murtaza, R Khenata, and A H Reshak Mater. Sci. Semicond. Process. 26 79 (2014)

  14. A Sajid J. Optoelectron. Adv. Mater. 16 76 (2014)

    Google Scholar 

  15. G Murtaza J. Optoelectron. Adv. Mater. 16 110 (2014)

    Google Scholar 

  16. P Ranjan, P Kumar, P K Surolia and T Chakraborty Thin Solid Films 2 138469 (2020)

    Google Scholar 

  17. M S Yaseen, J Sun, H Fang, G Murtaza and D S Sholl Solid State Sci. 111 106508 (2021)

    Article  Google Scholar 

  18. N Megag, M Ibrir, M Hadjab and S Berri Comput. Condens. Matter 28 e00577 (2021)

    Article  Google Scholar 

  19. P Ranjan and T Chakraborty Mater. Sci. Semicond. Process. 127 105745 (2021)

    Article  Google Scholar 

  20. M H Ali, M H Islam, M Rafid, R Ahmed, M R R Jeetu, R Roy and U Chakma Eurasian Chem. Commun. 3 327 (2021)

    Google Scholar 

  21. M Mirzaei and A H Rasouli Main Gr. Chem. 20 565 (2021)

    Article  Google Scholar 

  22. S F Abdulhussein and S M Abdalhadi Eurasian Chem. Commun. 4 598 (2022)

    Google Scholar 

  23. D M Chapin, C S Fuller and G L Pearson J. Appl. Phys. 25 676 (1954)

    Article  ADS  Google Scholar 

  24. J Y Kim, J W Lee, H S Jung, H Shin and N G Park Chem. Rev. 120 7867 (2020)

    Article  Google Scholar 

  25. M J Y Tayebjee, D R McCamey and T W Schmidt J. Phys. Chem. Lett. 6 2367 (2015)

    Article  Google Scholar 

  26. B Ehrler, E Alarcón-Lladó, S W Tabernig, T Veeken, E C Garnett and A Polman ACS Energy Lett. 5 3029 (2020)

    Article  Google Scholar 

  27. A K Singh, J H Montoya, J M Gregoire and K A Persson Nat. Commun. 10 1–19 (2019)

    Article  Google Scholar 

  28. J Mueller and U Zachwieja Z. Anorg. Allg Chem. 622 635 (1996)

    Article  Google Scholar 

  29. F Karsch, A Patkós and P Petreczky Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 401 69 (1997)

    Google Scholar 

  30. G Kresse and J Hafner Phys. Rev. B 47 558 (1993)

    Article  ADS  Google Scholar 

  31. G Kresse and J Furthmüller Comput. Mater. Sci. 6 15 (1996)

    Article  Google Scholar 

  32. J P Perdew and K Burke Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  33. G Prandini, A Marrazzo, I E Castelli and N Mounet npj Comput. Mater. 4 1 (2018)

    Article  Google Scholar 

  34. T Katsura and Y Tange Minerals 9 1 (2019)

    Article  Google Scholar 

  35. P Ranjan, P Kumar, T Chakraborty and M Sharma Mater. Chem. Phys. 241 122346 (2020)

    Article  Google Scholar 

  36. F Mouhat and F X Coudert Phys. Rev. B Condens. Matter Mater. Phys. 90 224104 (2014)

    Article  ADS  Google Scholar 

  37. S Tariq, A Ahmed, S Saad and S Tariq AIP Adv. 5 1 (2015)

    Article  Google Scholar 

  38. V Kumar and B P Singh Indian J. Phys. 92 29 (2018)

    Article  ADS  Google Scholar 

  39. S O Karta and T Cagın J. Alloys Compd. 508 177 (2020)

    Google Scholar 

  40. A A Benmakhlouf, A Benmakhlouf and O Allaoui Chin. J. Phys. 57 179 (2019)

    Article  Google Scholar 

  41. N Bioud, X W Sun and N Bouarissa J. Phys. Sci. 73 767 (2018)

    Google Scholar 

  42. H Rekab-Djabri and M Drief Can. J. Phys. 98 834 (2020)

    Article  ADS  Google Scholar 

  43. R Bhattacharjee and S Chattopadhyaya Mater. Chem. Phys. 199 295 (2017)

    Article  Google Scholar 

  44. F Giustino, M L Cohen and S G Louie Phys. Rev. B Condens. Matter. Phys. 81 115105 (2010)

    Article  ADS  Google Scholar 

  45. A Srivastava, P Sarkar, S K Tripathy and T R Lenka Sol. Energy 209 206 (2020)

    Article  ADS  Google Scholar 

  46. G Nazir, S Tariq and A Afaq Acta Phys. Pol. A 133 105 (2018)

    Article  ADS  Google Scholar 

  47. F Okbi, S Lakel, S Benramache and K Almi Semiconductors 54 58 (2020)

    Article  ADS  Google Scholar 

  48. G Murtaza and I Ahmad Phys. B Condens. Matter 406 3222 (2011)

    Article  ADS  Google Scholar 

  49. G Murtaza, B Iftikhar Ahmad, A Amin, M Afaq, J Maqbool, I Maqssod and M Z Khan Opt. Mater. (Amst) 33 553 (2011). https://doi.org/10.1016/j.optmat.2010.10.052

    Article  ADS  Google Scholar 

  50. M Mbilo and G S Manyali Comput. Condens. Matter 32 e00726 (2022)

    Article  Google Scholar 

  51. R J Musembi and M Mbilo Materialia 26 101587 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Partnership for Skills in Applied Sciences, Engineering and Technology (PASET)—Regional Scholarship Innovation Fund (RSIF) for the Funding opportunity; ISP through the KEN02 grant is thanked for seed funding of computing resources, and gratefully thanked is the Centre for High-Performance Computing, CHPC, Cape Town, RSA, for computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mwende Mbilo.

Ethics declarations

Conflict of interest

The authors declare that there were no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbilo, M., Musembi, R. & Rai, D.P. First-principles study of properties of X3Sb2Au3 (X = K, Rb) ternary compounds for photovoltaic applications. Indian J Phys 97, 2355–2362 (2023). https://doi.org/10.1007/s12648-022-02547-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02547-1

Keywords

Navigation