Skip to main content
Log in

Study of structural, dielectric, and electrical properties of the LaBaFe1.2Mn0.8O6 double perovskite

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The polycrystalline sample of LaBaFe1.2Mn0.8O6 was synthesized by sol–gel method. Preliminary analysis of room-temperature X-ray data pattern of the sample confirms the formation of a single-phase compound in rhombohedral crystal system with the space group R\(\overline{3 }\)C. Detailed studies of dielectric and impedance spectroscopy complex with frequency at various temperatures confirmed the existence of relaxation phenomenon in the material. Studies of electrical properties show a strong correlation with the microstructure and resistive properties of the material. The electrical transport shows the existence of a non-exponential conductivity relaxation in the material. For different temperatures, the variation of the real part of the permittivity as a function of frequency suggests that the material is a relaxor. Furthermore, the temperature evolution of direct current conductivity indicates that the compound has a semiconductor property. CBH is the most appropriate conduction model. This sample has significant electrical and dielectric qualities; it has a high permittivity and low dielectric loss, making it suitable for technical applications such as capacitors in the electrical area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G H Jonker and J H Van Santen Physica 16 337 (1950)

    Article  ADS  Google Scholar 

  2. J H Van Santen and G H Jonker Physica 16 599 (1950)

    Article  ADS  Google Scholar 

  3. E O Wollan and W C Koehler Phys. Rev. 100 545 (1955)

    Article  ADS  Google Scholar 

  4. R von Helmolt, J Wecker and B Holzapfel Rev. Lett 71 2331 (1993)

    Article  ADS  Google Scholar 

  5. S Jin, T H Tiefel, M M Cormack, R A Fastnacht and R Ramesh Science 264 413 (1994)

    Article  ADS  Google Scholar 

  6. R Mahesh, R Mahendiran and A K Raychaudhuri J. Solid State Chem 114 297 (1995)

    Article  ADS  Google Scholar 

  7. D I Khomskii and G A Sawatzky Solid State Commun. 102 87 (1997)

    Article  ADS  Google Scholar 

  8. B Wul, I M Goldman and C R Acad Sci. URSS 46 139 (1945)

    Google Scholar 

  9. K Iben Nassar, N Rammeh, S S Teixeira and M P F Graça J. Electron. Mater. 51 370 (2022)

    Article  ADS  Google Scholar 

  10. M Mohamed, K I Nassar, M Mohamed and N Rammeh J. Mol. Struct. 1258 132658 (2022)

    Article  Google Scholar 

  11. K I Nassar, M Slimi and N Rammeh Phys. A 127 940 (2021)

    Google Scholar 

  12. K I Nassar, M Slimi, N Rammeh and A Bouhamed J. Mater. Sci. Mater. Electron. 32 24050 (2021)

    Article  Google Scholar 

  13. H M Rietveld J. Appl. Crystallogr. 2 65 (1969)

    Article  Google Scholar 

  14. J Rodriguez-Carbajal Program FullProf. Laboratoire Léon Brillouin (CEACNRS) version 3.5d, LLB-JRS (1998)

  15. F Ramez Anipour, B Cowie, S Derakhshan, J E Greedan and L M D Cranswick J. Solid State Chem. 182 153 (2009)

    Article  ADS  Google Scholar 

  16. S A Hashmi Polym. J. 34 1277 (1998)

    Google Scholar 

  17. N Elghoul, M Wali, S Kraiem, H Rahmouni, E Dhahri and K Khirouni Physica B 108 112 (2015)

    Google Scholar 

  18. P Debye Polar molecules (New York: Chemical Catalog Co) (1929)

    MATH  Google Scholar 

  19. P C Sati, M Arora, S Chauhan, M Kumer and S Chhoker Ceram. Int. 40 9895 (2014)

    Article  Google Scholar 

  20. I Coondooa, N Panwarb, M A Rafiq, V S Pulid, M N Rafique and R S Katiyarf Ceram. Int. 40 9895 (2014)

    Article  Google Scholar 

  21. D C Sinclair and A R West J. Appl. Phys. 66 3850 (1989)

    Article  ADS  Google Scholar 

  22. B Behera J. Alloys Compd. 436 226 (2007)

    Article  Google Scholar 

  23. Y Olofsson, J Groot, T Katrašnik and G Tavcar, in Electric Vehicle Conference (IEVC) IEEE International, pp. 1–6 (2014)

  24. M F Hunley, J J Neumeier, R Heffer, Q X Jia, X D Wu and J D Thomson J. Appl. Phys. 79 4535 (1996)

    Article  ADS  Google Scholar 

  25. P B Macedo Chem. Glasses 14 122 (1973)

    Google Scholar 

  26. M Haj Lakhder, T Larbi, B Ouni and M Amlouk Mater. Sci. Semicond. Process. 40 596 (2015)

    Article  Google Scholar 

  27. A Omri, M Bejar, M Es-Souni and M A Valente J. Alloys Compd. 536 173 (2012)

    Article  Google Scholar 

  28. M M Costa and G F M Pires Jr Chem. Phys. 123 35 (2010)

    Google Scholar 

  29. K Lily and K P Kumari J. Alloys Compd. 453 325 (2008)

    Article  Google Scholar 

  30. A K Jonscher Nature 267 673 (1977)

    Article  ADS  Google Scholar 

  31. A K Jonscher Universal Relaxation Law, Chelsea (Dielectric Press, London) (1996)

  32. S R Elliot Adv. Phys. 36 135 (1987)

    Article  ADS  Google Scholar 

  33. K P Padmasree, D K Kanchan and A R Kulkami Solid State Ion. 177 475 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Iben Nassar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iben Nassar, K., Rammeh, N. Study of structural, dielectric, and electrical properties of the LaBaFe1.2Mn0.8O6 double perovskite. Indian J Phys 97, 1749–1757 (2023). https://doi.org/10.1007/s12648-022-02524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02524-8

Keywords

Navigation