Skip to main content
Log in

A novel motivation for the \((2+1)\)-dimensional Chiral NLSE via two random sources

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the \((2+1)\)-dimensional Chiral nonlinear Schrödinger equation (CNLSE) via two random sources. Namely, we solve this equation forced by multiplicative noise in Itô sense and the spatio-temporal coefficient or the wave transition follows beta random variable. We present some new stochastic solutions. These stochastic solutions are of great importance for investigation vital complex phenomena in optical fiber communication, computer industry, plasma physics, etc. We introduce the graphical simulations for some of the acquired solutions via the choice of suitable parameters through the MATLAB software for investigating the real significance of the CNLSE. Finally, our new motivation can be extended to further models arising in natural science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S Z Hassan, N A Alyamani and M A E Abdelrahman Eur. Phys. J. Plus 134 425(2019)

  2. Y F Alharbi, M A E Abdelrahman, M A Sohaly and S I Ammar Journal of Taibah University for Science 14 500 (2020)

    Article  Google Scholar 

  3. H Triki, et al Optics Communications 437 392(2019)

  4. M Younis, S Ali and S A Mahmood Nonlinear Dyn 81 1191 (2015)

    Article  Google Scholar 

  5. M A E Abdelrahman and M A Sohaly Indian Journal of Physics 93 903 (2019)

    Article  ADS  Google Scholar 

  6. M A E Abdelrahman and N F Abdo Physica Scripta 4 045220 (2020)

    Article  ADS  Google Scholar 

  7. S Frassu, T Li and G Viglialoro Mathematical Methods in the Applied Sciences 71 1 (2021)

    Google Scholar 

  8. S Frassu, T Li and G Viglialoro Applied Mathematics Letters 132 108 (2022)

    Article  Google Scholar 

  9. T Li, P Nicola and G Viglialoro Zeitschrift für angewandte Mathematik und Physik 3 1 (2019)

    Google Scholar 

  10. T Li and G Viglialoro Differential and Integral Equations 6 315 (2021)

    Google Scholar 

  11. F Mirzaee, S Rezaei and N Samadyar Mathematical Methods in the Applied Sciences 7 3426 (2022)

    Article  ADS  Google Scholar 

  12. F Mirzaee, S Rezaei and N Samadyar International Journal of Numerical Modelling: Electronic Networks Devices and Fields 4 e2856 (2021)

    Google Scholar 

  13. S Alipour and F Mirzaee Applied Mathematics and Computation 371 124947 (2020)

    Article  MathSciNet  Google Scholar 

  14. F Mirzaee, et al Iranian Journal of Science and Technology, Transactions A: Science 2 607(2021)

  15. A Biswas, S Konar (CRC Press: Chapman and Hall) (2006)

  16. Q Zhou, M Mirzazadeh, M Ekici and A Sonmezoglu Nonlinear Dyn 86 623 (2016)

    Article  Google Scholar 

  17. M Inc, A I Aliyu, A Yusuf, M Bayram and D Baleanu Modern Physics Letters B 19 1950223 (2019)

    Google Scholar 

  18. C K Kuo and B Ghanbari Nonlinear Dyn 96 459 (2019)

    Article  Google Scholar 

  19. H G Abdelwahed, E K El-Shewy, M A E Abdelrahman and A F Alsarhana Results in Physics 21 103798 (2021)

    Article  Google Scholar 

  20. M Mirzazadeh, M Eslami and A Biswas Nonlinear Dyn. 80 387 (2015)

    Article  Google Scholar 

  21. H Aminikhad, H Moosaei and M Hajipour Numer. Methods Partial Differ. Equations 26 1427 (2009)

    Google Scholar 

  22. M A E Abdelrahman and M A Sohaly Results in Physics 9 344 (2018)

    Article  ADS  Google Scholar 

  23. Y F Alharbi, M A Sohaly and M A E Abdelrahman Pramana - J Phys 95 157 (2021)

    Article  ADS  Google Scholar 

  24. F Mirzaee, S Rezaei and N Samadyar Computational and Applied Mathematics 41 1 (2022)

    Article  Google Scholar 

  25. F Mirzaee, S Erfan and N Shiva Applied Mathematics and Computation 410 126447 (2021)

    Article  Google Scholar 

  26. F Mirzaee, S Rezaei and N Samadyar Engineering Analysis with Boundary Elements 127 53 (2021)

    Article  MathSciNet  Google Scholar 

  27. F Mirzaee and N Samadyar Numerical Methods for Partial Differential Equations 37 1781 (2021)

    Article  MathSciNet  Google Scholar 

  28. F Mirzaee and N Samadyar Engineering with computers 36 1673 (2020)

    Article  Google Scholar 

  29. F Mirzaee and N Samadyar Multidiscipline Modeling in Materials and Structures 15 575 (2018)

    Article  Google Scholar 

  30. J Singh, A Gupta and D Baleanu Alexandria Engineering Journal 61 5073 (2022)

    Article  Google Scholar 

  31. B Ghanbari, D Kumar and J Singh Indian Journal of Physics 96 787(2022)

  32. V P Dubey, J Singh, A M Alshehri, S Dubey and D Kumar Mathematics and Computers in Simulation 196 296 (2022)

    Article  MathSciNet  Google Scholar 

  33. Y F Alharbi, M A Sohaly and M A E Abdelrahman Results in Physics 25 104249 (2021)

    Article  Google Scholar 

  34. L Shaikhet Springer Science & Business Media (2013)

  35. A Javid and N Raza Modern Physics Letters B 33 3 1950401 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  36. F Dalfovo, S Giorgini, L P Pitaevskii and S Stringari Rev. Modern Phys 71 463 (1999)

    Article  ADS  Google Scholar 

  37. K Nakkeeran Chaos Solitons Fractals 13 673(2002)

  38. M A E Abdelrahman and M A Sohaly Eur. Phys. J. Plus 132 339 (2017)

    Article  Google Scholar 

  39. Y F Alharbi, M A E Abdelrahman, M A Sohaly and M Inc The European Physical Journal Plus 135 368 (2020)

    Article  ADS  Google Scholar 

  40. M A E Abdelrahman, S Z Hassan and M Inc Modern Physics Letters B 34 2050078 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  41. M A E Abdelrahman, M A Sohaly and Y F Alharbi Physica Scripta 96 125223 (2021)

    Article  ADS  Google Scholar 

  42. A Nishino, Y Umeno and M Wadati Chaos Solitons Fractals 9 1063 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  43. N L Tsitsas, A Lakhtakia and D J Frantzeskakis J. Phys. A Math. Theor 44 435203(2011)

  44. M S Ismail, K S Al-Basyouni and A Aydin Bound. Value Probl 89 (2015)

  45. M Younis, N Cheemaa, S A Mahmood and S T R Rizvi Opt. Quant. Electron 48 542 (2016)

    Article  Google Scholar 

  46. M Eslami Nonlinear Dyn. 85 813 (2016)

    Article  Google Scholar 

  47. M Shats, H Punzmann and H Xia Phys. Rev. Lett 104 104503 (2010)

    Article  ADS  Google Scholar 

  48. H Bailung, S K Sharma and Y Nakamura Phys. Rev. Lett 107 255005 (2011)

    Article  ADS  Google Scholar 

  49. B Kibler, et al Nature Phys 6 790(2010)

  50. A Chabchoub, N P Hoffmann and N Akhmediev Phys. Rev. Lett 106 204502 (2011)

    Article  ADS  Google Scholar 

  51. P Pathak, S K Sharma, Y N akamura and H Bailung Phys. Lett. A 381 4011 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  52. C Yan Physics Letters A 224 77(1996)

  53. L Griguolo and D Seminara Nuclear Phys. B 516 467 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  54. J H Lee, C K Lin and O K Pashev Chaos Solitons Fractals 19 1 109 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  55. H Ikezi, K Schwarzenegger, A L Simsons, Y Ohsawa and T Kamimura Phys. Fluids 21 239 (1978)

    Article  ADS  Google Scholar 

  56. V E Zakharov and L A Ostrovsky Nonlinear Phenomena 238 5 540 (2009)

    Article  MathSciNet  Google Scholar 

  57. A C Scott Encyclopedia of Nonlinear Science, Routledge (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sohaly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohaly, M.A., Abdelrahman, M.A.E. A novel motivation for the \((2+1)\)-dimensional Chiral NLSE via two random sources. Indian J Phys 97, 1965–1971 (2023). https://doi.org/10.1007/s12648-022-02517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02517-7

Keywords

Navigation