Skip to main content
Log in

Kantowski–Sachs perfect fluid cosmological model in \(R^2\)- Gravity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present study, the Kantowski–Sachs perfect fluid cosmological model in modified theory suggested by Harko et al. [1] is obtained. In this paper, the functional form \(f(R,T)=f_1(R)+f_2(T)\)=\(R + \alpha R^2 +\lambda T\) of f(RT) gravity where \(\alpha\) and \(\lambda\) are constants, R is Ricci scalar, and T is the trace of energy–momentum tensor is considered. To get the solutions to the field equations, the following two conditions are used: (i) hybrid expansion law of the scale factor and (ii) expansion scalar is proportional to the shear scalar. We have computed dynamical and physical parameters, and their relevance to modern cosmology is also explained with the help of their plots. For various values of \(\alpha _1\) and a fixed value of \(\alpha _2\), it is noticed that the pressure is negative, whereas energy density is positive representing the accelerating universe. We have observed that NEC is satisfied for all the values of \(\alpha _1\) and a fixed value of \(\alpha _2\), which results in the quintessence region of the EoS parameter. The stability of the solutions of the obtained model is verified using the perturbation technique. Finally, all cosmological parameters are compatible with recent observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)

    ADS  Google Scholar 

  2. T W B Kibble and N Turok Phys. Lett. B 116 141 (1982)

    ADS  Google Scholar 

  3. P Mahanta and A Mukharjee Indian J. Pure Appl. Math. 32 199 (2001)

    MathSciNet  Google Scholar 

  4. J JStachel Phys. Rev. D 21 2171 (1980)

    ADS  Google Scholar 

  5. D Momeni, R Myrzakulov and E Gudekli Int. J. Geom. Methods Mod. Phys. 12 1550101 (2015)

    MathSciNet  Google Scholar 

  6. M F Shamir J. Exp. Theor. Phys. 122 331 (2016)

    ADS  Google Scholar 

  7. M F Shamir Commum. Theor. Phys. 65 301 (2016)

    ADS  Google Scholar 

  8. S Nojiri and S D Odinstov Phys. Rept. 505 59 (2011)

    ADS  Google Scholar 

  9. A De Felice and S Tsujikawa Living Rev. Relativ. 13 3 (2010)

    ADS  Google Scholar 

  10. I De Martino, M De Laurentis and S Capozziello Universe 1 123 (2015)

    ADS  Google Scholar 

  11. Nisha Godani and G C Samanta Indian J. Phys. 94 1303 (2020)

    ADS  Google Scholar 

  12. T Clifton, P G Ferreira, A Padilla and C Skordis Phys. Rept. 513 1 (2012)

    ADS  Google Scholar 

  13. T Multamaki and I Vilja Phys. Rev. D 74 064022 (2006)

    ADS  MathSciNet  Google Scholar 

  14. T Multamaki and I Vilja Phys. Rev. D 76 064021 (2007)

    ADS  Google Scholar 

  15. M F Shamir Astrophys. Space Sci. 330 183 (2010)

    ADS  Google Scholar 

  16. G C Samanta, Nisha Godani and Kazuharu Bamba Int. J. Mod. Phys. D 29 2050068 (2020)

    ADS  Google Scholar 

  17. Nisha Godani and G C Samanta Int. J. Mod. Phys. A 35 2050186 (2020)

    ADS  Google Scholar 

  18. Nisha Godani and G C Samanta Ann. Phys. 429 168460 (2021)

    Google Scholar 

  19. Nisha Godani and G C Samanta Phys. Scr. 96 015303 (2021)

    ADS  Google Scholar 

  20. G C Samanta and S N Dhal Int. J. Theor. Phys. 52 1334 (2013)

    Google Scholar 

  21. S Nojiri and S D Odintsov Phys. Lett. B 631 1 (2005)

    ADS  MathSciNet  Google Scholar 

  22. S Nojiri and S D Odintsov Phys. Rev. D 74 086005 (2006)

    ADS  Google Scholar 

  23. G P Singh, B K Bishi and P K Sahoo Int. J. Geom. Methods Mod. Phys. 13 1650058 (2016)

    MathSciNet  Google Scholar 

  24. G P Singh, B K Bishi and P K Sahoo Chin. J. Phys. 54 244 (2016)

    Google Scholar 

  25. G P Singh and B K Bishi Astrophys. Space Sci. 34 360 (2015)

    Google Scholar 

  26. P K Sahoo, B Mishra and G Chakradhar Reddy Eur. Phys. J. Plus. 129 49 (2014)

    Google Scholar 

  27. Nisha Godani Int. J. Geom. Methods Mod. Phys. 16 1950024 (2019)

    MathSciNet  Google Scholar 

  28. Nisha Godani and G C Samanta Chin. J. Phys. 66 787 (2020)

    Google Scholar 

  29. P K Sahoo, P H R S Moraes, Parbati Sahoo and Binaya K Bishi Eur. Phys. J. C 78 736 (2018)

    ADS  Google Scholar 

  30. P K Sahoo, P H R S Moraes and Parbati Sahoo Eur. Phys. J. C 78 46 (2018)

    ADS  Google Scholar 

  31. D C Maurya New Astron. 77 101355 (2020)

    Google Scholar 

  32. T Vinutha and K S Kavya Eur. Phys. J. Plus. 135 306 (2020)

    Google Scholar 

  33. I Noureen, M Zubair, A A Bhatti and G Abbas Eur. Phys. J. C 75 323 (2015)

    ADS  Google Scholar 

  34. M Zubair and I Noureen Eur. Phys. J. C 75 265 (2015)

    ADS  Google Scholar 

  35. A S Koshelev, L Modesto, L Rachwal and A A Starobinsky J. High Energy Phys. 11 67 (2016)

    ADS  Google Scholar 

  36. T Vinutha and K Venkata Vasavi New Astron. 89 101647 (2021)

    Google Scholar 

  37. T Vinutha, K S Kavya and K Niharika Phys. Dark Universe 34 100896 (2021)

    Google Scholar 

  38. A A Starobinsky Phys. Lett. B 91 99 (1980)

    ADS  Google Scholar 

  39. A A Starobinsky Adv. Ser. Astrophys. Cosmol. 3 130 (1987)

    Google Scholar 

  40. A Vilenkin Phys. Rev. D 32 2511 (1985)

    ADS  MathSciNet  Google Scholar 

  41. Milan B Mijic, Michael S Morris and Wai-Mo Suen Phys. Rev. D 34 2934 (1986)

    ADS  Google Scholar 

  42. Fu Xiangyun, Puxun Wu and Hongwei Yu Eur. Phys. J. C 68 271 (2010)

    ADS  Google Scholar 

  43. P Pavlovic and M Sossich Eur. Phys. J. C 75 117 (2015)

    ADS  Google Scholar 

  44. S Kaneda and S V Ketov Eur. Phys. J. C 76 26 (2016)

    ADS  Google Scholar 

  45. Emilio Elizalde, Nisha Godani and G C Samanta Phys. Dark Universe 30 100618 (2020)

    Google Scholar 

  46. M Sharif and A Siddiqa Phys. Dark Universe 15 105 (2017)

    ADS  Google Scholar 

  47. R Kantowski and R K Sachs J. Math. Phys. 7 443 (1966)

    ADS  Google Scholar 

  48. C B Collins J. Math. Phys. 18 2116 (1977)

    ADS  Google Scholar 

  49. L Gergely Phys. Rev. D 59 104014 (1999)

    ADS  MathSciNet  Google Scholar 

  50. T Vinutha, V U M Rao, G Bekele and M Mengesha Astrophys. Space Sci. 363 188 (2018)

    ADS  Google Scholar 

  51. R Chaubey Int. J. Theo. Phys. 51 3933 (2012)

    Google Scholar 

  52. X X Wang Astrophys. Space Sci. 298 433 (2005)

    ADS  Google Scholar 

  53. E Weber J. Math. Phys. 25 3279 (1984)

    ADS  MathSciNet  Google Scholar 

  54. S D Katore and R S Rane Astrophys. Space Sci. 323 293 (2009)

    ADS  Google Scholar 

  55. J R Ray Nuovo Cimento B 71 19 (1982)

    ADS  Google Scholar 

  56. V U M Rao, T Vinutha and M Vijaya Santhi Astrophys. Space Sci. 314 213 (2008)

    ADS  Google Scholar 

  57. V U M Rao, T Vinutha and M Vijaya Santhi Astrophys. Space Sci. 317 27 (2008)

    ADS  Google Scholar 

  58. V U M Rao, T Vinutha, M Vijaya Shanthi and K V S Sireesha Astrophys. Space Sci. 315 211 (2008)

    ADS  Google Scholar 

  59. T Vinutha and K S Kavya Results Phys. 23 103863 (2021)

    Google Scholar 

  60. A Pradhan and K Jotania Indian J. Phys. 85 497 (2011)

    ADS  Google Scholar 

  61. A Pradhan, P Pandey and S K Singh Int. J. Theor. Phys. 46 1584 (2007)

    Google Scholar 

  62. O Bertolami, C G Bohmer, T T Harko and F S N Lobo Phys. Rev. D 75 104016 (2007)

    ADS  MathSciNet  Google Scholar 

  63. Y Bisabr Gen. Relativ. Gravit. 45 1559 (2013)

    ADS  MathSciNet  Google Scholar 

  64. T P Sotiriou and V Faraoni Class. Quantum Gravity 25 205002 (2008)

    ADS  Google Scholar 

  65. O Akarsu Suresh Kumar, R Myrzakulov, M Sami and Lixin Xu J. Cosmol. Astropart. Phys. 1 022 (2014)

    Google Scholar 

  66. R A Daly et al Astrophys. J. 677 1 (2008)

    ADS  Google Scholar 

  67. Y Aditya and D R K Reddy Astrophys. Space Sci. 363 207 (2018)

    ADS  Google Scholar 

  68. Valentina Salvatelli, Andrea Marchini, Laura Lopez-Honorez and Olga Mena Phys. Rev. D 88 023531 (2013)

    ADS  Google Scholar 

  69. N Godani Indian J. phys. 93 951 (2019)

    ADS  Google Scholar 

  70. A Raychaudhuri Phys. Rev. 98 1123 (1955)

    ADS  MathSciNet  Google Scholar 

  71. M Visser Science 276 88 (1997)

    ADS  Google Scholar 

  72. S Capozziello, F S N Lobo and J P Mimoso Phys. Lett. B 730 280 (2014)

    ADS  MathSciNet  Google Scholar 

  73. S Capozziello, F S N Lobo and J P Mimoso Phys.Rev. D 91 124019 (2015)

    ADS  MathSciNet  Google Scholar 

  74. A K Yadav, P K Sahoo and V Bhardwaj Mod. Phys. Lett. A 34 1950145 (2019)

    ADS  Google Scholar 

  75. Chiang-Mei Chen and W F Kao Phys. Rev. D 64 124019 (2001)

    ADS  MathSciNet  Google Scholar 

  76. B Saha, H Amirhashchi and A Pradhan Astrophys. Space Sci. 342 257 (2012)

    ADS  Google Scholar 

  77. I Brevik Entropy 17 6318 (2015)

    ADS  MathSciNet  Google Scholar 

  78. B Mishra, P P Ray and S K J Pacif Eur. Phys. J. Plus 132 429 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vinutha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinutha, T., Vasavi, K.V., Niharika, K. et al. Kantowski–Sachs perfect fluid cosmological model in \(R^2\)- Gravity. Indian J Phys 97, 1621–1632 (2023). https://doi.org/10.1007/s12648-022-02470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02470-5

Keywords

Navigation