Skip to main content
Log in

The collision frequencies of charged particles in the complex plasmas with the non-Maxwellian velocity distributions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We study the collision frequencies of charged particles in the complex plasmas with the two-parameter and three-parameter non-Maxwellian velocity distributions. The average collision frequencies of electron–ion, electron–electron and ion–ion for the distributions are derived, respectively. We show that the average collision frequencies in the complex plasmas depend strongly on the parameters in the non-Maxwellian distributions and thus are significantly different from those cases in the plasmas with a Maxwell velocity distribution. The significant effects of the non-Maxwell parameters on the average collision frequencies are numerically analyzed. The results have important impacts on the transport coefficients and transport properties of charged particles in the highly or fully ionized complex plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T G Cowling Cosmical Electrodynamics (London: Oxford University Press) (1963)

    Google Scholar 

  2. J P Freidberg Plasma Physics and Fusion Energy (Cambridge University Press) (2008)

    Google Scholar 

  3. R J Goldston and P H Rutherford Introduction to Plasma Physics (CRC Press) (1995)

    Book  MATH  Google Scholar 

  4. F Sun and J Du Contrib. Plasma Phys. 60 e201900183 (2020)

    Article  ADS  Google Scholar 

  5. R Guo and J Du Physica A 523 156 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Y Wang and J Du Physica A 527 121120 (2019)

    Article  MathSciNet  Google Scholar 

  7. Y Wang and J Du Phys. Plasmas 25 062309 (2018)

    Article  ADS  Google Scholar 

  8. Y Wang and J Du Physica A 541 123281 (2020)

    Article  MathSciNet  Google Scholar 

  9. J Du Phys. Plasmas 20 092901 (2013)

    Article  Google Scholar 

  10. S Chapman and T G Cowling The Mathematical Theory of Non-Uniform Gases an Account of The Kinetic Theory of Viscosity Thermal Conduction and Diffusion In Gases (Cambridge University Press) (1970)

    MATH  Google Scholar 

  11. C Tsallis J. Stat. Phys. 52 479 (1988)

    Article  ADS  Google Scholar 

  12. J Du, R Guo, Z Liu and S Du Contrib. Plasma Phys. 59 2 (2019)

    Article  Google Scholar 

  13. R Silva, A R Plastino and J A S Lima Phys. Lett. A 249 401 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. X Ji and J Du Physica A 523 292–300 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. V M Vasyliunas J. Geophys. Res. 73 2839 (1968)

    Article  ADS  Google Scholar 

  16. G G Howes Phys. Plasmas 25 055501 (2018)

    Article  ADS  Google Scholar 

  17. P H Yoon Entropy 21 820 (2019)

    Article  ADS  Google Scholar 

  18. S Galtier J. Phys. A 51 293001 (2018)

    Article  MathSciNet  Google Scholar 

  19. S Ali, A A Abid, J Du and A A Mamun Contrib. Plasma Phys. 58 976 (2018)

    Article  ADS  Google Scholar 

  20. K Ourabah Phys. Rev. D 102 043017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. L Herrera, A D Prisco and J Ospino Eur. Phys. J. C 80 7 (2020)

    Article  Google Scholar 

  22. J Du Astrophys. Space. Sci. 312 47 (2007)

    Article  Google Scholar 

  23. M P Leubner Astrophys. J. Lett. 632 L1 (2005)

    Article  ADS  Google Scholar 

  24. J Du Physica A 391 1718 (2012)

    Article  ADS  Google Scholar 

  25. C Yin and J Du Physica A 395 416 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. A Adare, S Afanasiev and C Aidala Phys. Rev. D 83 052004 (2011)

    Article  ADS  Google Scholar 

  27. Z Huang, G Su, A E Kaabouchi, Q A Wang and J Chen J. Stat. Mech. L05001 (2010)

  28. Y Zhou and C Yin Physica A 417 267 (2015)

    Article  ADS  Google Scholar 

  29. H Wang and J Du Commun. Theor. Phys. 73 095501 (2021)

    Article  ADS  Google Scholar 

  30. Y Wang and J Du Physica A 566 125623 (2021)

    Article  Google Scholar 

  31. S A Ghorashi and M Mahdavi Phys. Plasmas 24 023301 (2017)

    Article  ADS  Google Scholar 

  32. R W Walsh Science. 307 51 (2005)

    Article  Google Scholar 

  33. B D Savage, M R Meade and K R Sembach Astrophys. J. Suppl. 136 631 (2001)

    Article  ADS  Google Scholar 

  34. H Yu and J Du Europhys. Lett. 116 60005 (2016)

    Article  ADS  Google Scholar 

  35. D Summers and R M Throne Phys. Fluids B. 3 1835 (1991)

    Article  ADS  Google Scholar 

  36. M N S Qureshi, H A Shah, G Murtaza, F Mahmood and S J Schwartz Phys. Plasmas 11 3819 (2004)

    Article  ADS  Google Scholar 

  37. M N S Qureshi, W Nasir, W Masood, P H Yoon, H A Shah and S J Schwartz J. Geophys. Res. Space Phys. 119 020476 (2014)

    Article  Google Scholar 

  38. M N S Qureshi, G Pallocchia and R Bruno AIP Conf. Proc. 679 489 (2003)

    Article  ADS  Google Scholar 

  39. M N S Qureshi Phys. Plasmas 12 122902 (2005)

    Article  ADS  Google Scholar 

  40. D S Hall, C P Chaloner, D A Bryant and D R Lepine J. Geophys. Res. 96 7869 (1991)

    Article  ADS  Google Scholar 

  41. R A Cairns et al Geophys. Res. Lett. 22 2709 (1995)

    Article  ADS  Google Scholar 

  42. A A Abid, M Z Khan, Lu Quanming and S L Yap Phys. Plasmas 24 033702 (2017)

    Article  ADS  Google Scholar 

  43. G Yao and J Du Europhys. Lett. 132 40002 (2020)

    Article  ADS  Google Scholar 

  44. G Faussurier and C Blancard Phys. Plasmas 23 012703 (2016)

    Article  ADS  Google Scholar 

  45. L Guo and L Guo Phys. Plasmas 24 112119 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11775156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiulin Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Equation (15) is calculated as follows.

$$\begin{gathered} F_{{ei}} \; = \; - \frac{{3N_{e} N_{i} Z_{i}^{2} e^{4} \ln \Lambda }}{{16\pi ^{2} \varepsilon _{0}^{2} m_{e} }}\frac{{E_{{r,\sigma }} }}{{X_{{r,\sigma }}^{{3/2}} {\text{ }}v_{{Te}}^{3} }} \hfill \\ \;\;\;\;\;\;\;\int {d{\mathbf{v}}\frac{{\mathbf{v}}}{{v^{3} }}} \left\{ {1 + \frac{{2\sigma (1 + r){\mathbf{v}} \cdot {\mathbf{u}}}}{{(\sigma - 1)X_{{r,\sigma }} v_{{Te}}^{2} }}\left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} \left[ {1 + \frac{1}{{\sigma - 1}}\left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{{1 + r}} } \right]^{{ - 1}} } \right\}\left[ {1 + \frac{1}{{\sigma - 1}}\left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{{1 + r}} } \right]^{{ - \sigma }} \hfill \\ \;\;\;\;\; = - \frac{{3N_{e} N_{i} Z_{i}^{2} e^{4} \ln \Lambda }}{{8\pi ^{2} \varepsilon _{0}^{2} k_{B} T_{e} }}\frac{{E_{{r,\sigma }} }}{{X_{{r,\sigma }}^{{5/2}} {\text{ }}v_{{Te}}^{3} }}\frac{{\sigma (1 + r)}}{{\sigma - 1}}\int {d{\mathbf{v}}\frac{{{\mathbf{vv}} \cdot {\mathbf{u}}}}{{v^{3} }}} \left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} \left[ {1 + \frac{1}{{\sigma - 1}}\left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{{1 + r}} } \right]^{{ - \sigma - 1}} . \hfill \\ \end{gathered}$$
(42)

Due to \({\mathbf{u}} = (0,0,u_{z} )\), we obtain that

$$\begin{gathered} F_{{ei}} = - \frac{{3N_{e} N_{i} Z_{i}^{2} e^{4} u_{z} \ln \Lambda }}{{8\pi ^{2} \varepsilon _{0}^{2} k_{B} T_{e} }}\frac{{E_{{r,\sigma }} }}{{X_{{r,\sigma }}^{{5/2}} {\text{ }}v_{{Te}}^{3} }}\frac{{\sigma (1 + r)}}{{\sigma - 1}}{\text{ }} \hfill \\ \;\;\;\;\;\;\;\int_{{ - v_{{\max }} }}^{{v_{{\max }} }} {d{\mathbf{v}}\frac{{v_{z}^{2} }}{{v^{3} }}} \left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} \left[ {1 + \frac{1}{{\sigma - 1}}\left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{{1 + r}} } \right]^{{ - \sigma - 1}} \hfill \\ = - \frac{{N_{e} N_{i} Z_{i}^{2} e^{4} u_{z} \ln \Lambda }}{{2\pi \varepsilon _{0}^{2} k_{B} T_{e} }}\frac{{\sigma (1 + r)E_{{r,q}} }}{{(\sigma - 1)X_{{r,q}}^{{5/2}} v_{{Te}}^{3} }}\int_{0}^{{v_{{\max }} }} {dv} \left( {\frac{{v^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} v\left[ {1 + \frac{1}{{\sigma - 1}}\left( {\frac{{v^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{{1 + r}} } \right]^{{ - \sigma - 1}} . \hfill \\ \end{gathered}$$
(43)

If \(v_{\max } = \infty\), we derive that

$$F_{ei} = - \frac{{N_{e} N_{i} Z_{i}^{2} e^{4} u_{z} m_{e}^{1/2} \ln \Lambda }}{{4\pi \varepsilon_{0}^{2} (k_{B} T_{e} )^{3/2} }}\frac{{E_{r,\sigma } }}{{X_{r,\sigma }^{3/2} }}.$$
(44)

Appendix 2

Equation (30) is calculated as follows.

$$\begin{aligned} F_{{ei}} = & - \frac{{3N_{e} N_{i} Z_{i}^{2} e^{4} \ln \Lambda }}{{16\pi ^{2} \varepsilon _{0}^{2} m_{e} }}\frac{{\rho _{{\alpha ,r,\sigma }} }}{{X_{{r,\sigma }}^{{3/2}} {\text{ }}v_{{Te}}^{3} }}\int {d{\mathbf{v}}\frac{{\mathbf{v}}}{{v^{3} }}} \left\{ {1 + {\mathbf{u}}B^{{ - 1}} \left( {\frac{{{\mathbf{v}}_{e}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} \frac{{2\sigma (1 + r)}}{{X_{{r,\sigma }} (\sigma - 1)}} - {\mathbf{u}}A^{{ - 1}} \frac{{4\alpha {\mathbf{v}}_{e}^{2} }}{{v_{{Te}}^{4} }}} \right\}AB^{{ - \sigma }} \\ = & - \frac{{3N_{e} N_{i} Z_{i}^{2} e^{4} \ln \Lambda }}{{16\pi ^{2} \varepsilon _{0}^{2} k_{B} T_{e} }}\frac{{\rho _{{\alpha ,r,\sigma }} }}{{X_{{r,\sigma }}^{{3/2}} {\text{ }}v_{{Te}}^{3} }}\int {d{\mathbf{v}}\frac{{{\mathbf{vv}} \cdot {\mathbf{u}}}}{{v^{3} }}} \left[ {AB^{{ - \sigma - 1}} \left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} \frac{{2\sigma (1 + r)}}{{X_{{r,\sigma }} (\sigma - 1)}} - \frac{{4\alpha {\mathbf{v}}_{e}^{2} }}{{v_{{Te}}^{2} }}B} \right] \\ \end{aligned}$$
(45)

Due to \({\mathbf{u}} = (0,0,u_{z} )\), we obtain that

$$\begin{gathered} F_{{ei}} = - \frac{{3N_{e} N_{i} Z_{i}^{2} e^{4} u_{z} \ln \Lambda }}{{16\pi ^{2} \varepsilon _{0}^{2} k_{B} T_{e} }}\frac{{\rho _{{\alpha ,r,\sigma }} }}{{X_{{r,\sigma }}^{{3/2}} {\text{ }}v_{{Te}}^{3} }}\int_{{ - v_{{\max }} }}^{{v_{{\max }} }} {\frac{{v_{z}^{2} }}{{v^{3} }}} \hfill \\ \;\;\;\;\;\;\;\;\left[ {AB^{{ - \sigma - 1}} \left( {\frac{{{\mathbf{v}}^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} \frac{{2\sigma (1 + r)}}{{X_{{r,\sigma }} (\sigma - 1)}} - \frac{{4\alpha {\mathbf{v}}^{2} }}{{v_{{Te}}^{2} }}B} \right]d{\mathbf{v}} \hfill \\ \;\;\;\; = - \frac{{N_{e} N_{i} Z_{i}^{2} e^{4} u_{z} \ln \Lambda }}{{4\pi \varepsilon _{0}^{2} k_{B} T_{e} }}\frac{{\rho _{{\alpha ,r,\sigma }} }}{{X_{{r,\sigma }}^{{3/2}} {\text{ }}v_{{Te}}^{3} }}\int_{0}^{{v_{{\max }} }} v \hfill \\ \;\;\;\;\;\;\;\;\left[ {AB^{{ - \sigma - 1}} \left( {\frac{{v^{2} }}{{X_{{r,\sigma }} v_{{Te}}^{2} }}} \right)^{r} \frac{{2\sigma (1 + r)}}{{(\sigma - 1)X_{{r,\sigma }} }} - \frac{{4\alpha v^{2} }}{{v_{{Te}}^{2} }}B} \right]dv \hfill \\ \end{gathered}$$
(46)

If \(v_{\max } = \infty\), we have that

$$F_{ei} = - \frac{{N_{e} N_{i} Z_{i}^{2} e^{4} u_{z} m_{e}^{1/2} \ln \Lambda }}{{4\pi \varepsilon_{0}^{2} (k_{B} T_{e} )^{3/2} }}\frac{{\rho_{\alpha ,r,\sigma } }}{{X_{r,\sigma }^{3/2} }},$$
(47)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Du, J. The collision frequencies of charged particles in the complex plasmas with the non-Maxwellian velocity distributions. Indian J Phys 97, 933–942 (2023). https://doi.org/10.1007/s12648-022-02465-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02465-2

Keywords

Navigation