Skip to main content
Log in

Moments of probability density of Hydrogen atom in a cage

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

There are various information theoretic measures to study many complex systems. Most of the attention has been confined to the study of the free and confined hydrogen atom for the ground state. The Shannon entropy, Fisher entropy, Renyi entropy, and Tsalli entropy have been investigated extensively in the literature. These entropies are non-extensive and employ only the first moment of probability distribution functions. In the present work, we have presented results of the confined Hydrogen atom in a hard and a soft wall, in which higher moments of probability distribution functions are used that have a close relationship with entropic moments. These moments are the average values of nth power of probability distribution functions. The \(n\) = 2 moments in (\(r\)-) and (\(p\)-) spaces are specifically known as Onicescu energies and are denoted by \({E}_{r}\) and \({E}_{p}\). Since the position (\(r\)-) and the momentum (\(p\)-) wavefunctions are connected through Fourier transformation, all the moments in (\(r\)-) and (\(p\)-) spaces exhibit contrasting behaviour. For large confining radius, these moments attain their asymptotic values of the free Hydrogen atom. In confining environments, the (\(r\)-) and (\(p\)-) curves cross each other. The product of each moment in (\(r\)-) and (\(p\)-) spaces remain almost constant, in conformity with the Uncertainty product. The effect of confinement is noticeable below the crossing points. We have also evaluated \({E}_{r}\), for a confined attractive short-range spherical Gaussian type potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C E Shannon Bell Syst. Tech. J. 27 379 (1948)

    Article  Google Scholar 

  2. R Khordad and H R Rastegar Indian J. Phys. 92 979 (2018)

    Article  ADS  Google Scholar 

  3. X Y Chen, T Chen and C S Jia Eur. Phys. J. Plus 129 1 (2014)

    Article  Google Scholar 

  4. T Tietz J. Chem. Phys. 38 3036 (1963)

    Article  ADS  Google Scholar 

  5. N Mukherjee and A K Roy Int J. Quant. Chem. 118 e25596 (2018)

    Article  Google Scholar 

  6. H M Tang, G C Liang and L H Zhang J. Chem. 92 201 (2014)

    Google Scholar 

  7. T Tietz J. Chem. Phys. 35 1917 (1961)

    Article  ADS  Google Scholar 

  8. L G Jiao, L R Zan, Y Z Zhang and Y K Ho Int. J. of Quantum Chem. 117 e25375 (2017)

    Article  Google Scholar 

  9. C R Estañón, N Aquino, D Puertas-Centeno, and J S Dehesa. Int. J. of Quantum Chem. 120: e26192 (2020) (not used anywhere)

  10. L Wu, S Shang and L Bowen Phys. Lett. A 384 126033 (2020)

    Article  Google Scholar 

  11. S Goldman and C Joslin J. Phys. Chem. 96 6021 (1992)

    Article  Google Scholar 

  12. F M Fernandez and E A Castro J. Math. Phys. 23 1103 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  13. Y P Varshni J. Phys. B: At. Mol. Opt. Phys. 30 L589 (1997)

    Article  ADS  Google Scholar 

  14. S Zozor, M Portesi and C Vignat Physica A 387 4800 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. C Tsallis J. Stat. Phys. 52 479 (1988)

    Article  ADS  Google Scholar 

  16. M P de Albuquerque, I A Esquef and A R Gesualdi Mello Pattern Recogn. Lett. 25 1059 (2004)

    Article  ADS  Google Scholar 

  17. E N Saridakis, K Bamba, R Myrzakulov and F K Anagnostopoulos J. Cosmol. Astropart. Phys. 2018 012 (2018)

    Article  Google Scholar 

  18. V Rajnikanth, N Dey, S C Satapathy and A S Ashour Future Generation Computer Systems 85 160 (2018)

    Article  Google Scholar 

  19. V P Singh, B Sivakumar and H Cui Entropy 19 641 (2017)

    Article  ADS  Google Scholar 

  20. P A Varotos, N V Sarlis and E S Skordas Entropy 20 757 (2018)

    Article  ADS  Google Scholar 

  21. M Jamaati and A Mehri Physica A: Statistical Mechanics and its Applications 490 1368 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  22. Y Wangand and P Shang Nonlinear Dyn. 94 1361 (2018)

    Article  Google Scholar 

  23. S Saha and J Jose Phys. Scr. 96 094012 (2021)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Bassi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassi, M., Baluja, K.L. Moments of probability density of Hydrogen atom in a cage. Indian J Phys 97, 719–725 (2023). https://doi.org/10.1007/s12648-022-02463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02463-4

Keywords

Navigation