Skip to main content
Log in

First-principles study of Na insertion at SiC and TiO2 anatase surfaces for Na-ion battery design

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

First-principles study of Na insertion in the surfaces of (001), (100), and (101) of titanium dioxide (TiO2) anatase and silicon carbide (SiC) is carried out by using density functional theory (DFT) method. From the results of the insertion energy calculation, the (001) surface of TiO2 anatase and the (101) surface of SiC insertion are chosen as the preferred surfaces for the Na insertion. The electronic properties of the preferred surfaces of TiO2 anatase and SiC are studied from the band structure and density of states calculation to infer the effect of Na atom insertion in enhancing the electronic conductivity. In addition, molecular dynamics simulation is also done to study the movement rate of Na atom in the (001) surface of TiO2 anatase and (101) surface of SiC surface and the results show that (101) surface of SiC is a better choice for usage as an anode material in Na-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C Nithya and S Gopukumar Energy Environ. 4 3 253 (2015)

    Google Scholar 

  2. T Kim and W Song J. Mat. Chem. A 7 2942 (2019)

    Article  Google Scholar 

  3. D Karabelli, S Singh, S Kiemel, J Koller, A Konarov, F Stubhan, R Miehe, M Weeber, Z Bakenov Kai and P Birke Front. Energy Res. 8 605129 (2020)

    Article  Google Scholar 

  4. K M Abraham ACS Energy Lett. 5 11 3544 (2020)

    Article  Google Scholar 

  5. D Datta, J Li and V B Shenoy ACS Appl. Mater. Interfaces 6 3 1788 (2014)

    Article  Google Scholar 

  6. H Pan, Y-S Hu and L Chen Energy Environ. Sci. 6 8 2338 (2013)

    Article  Google Scholar 

  7. Y Wen, K He, Y Zhu, F Han, Y Xu, I Matsuda and Y Ishii Commun. 5 4033 (2014)

    Google Scholar 

  8. J Wan, F Gu, W Bao, J Dai, F Shen, W Luo, X Han, D Urban and L Hu Nano Lett. 15 3763 (2015)

    Article  ADS  Google Scholar 

  9. W Luo, C Bommier, Z Jian, X Li, R Carter, S Vail and Y Lu Interfaces 7 2626 (2015)

    Google Scholar 

  10. Y Liu, Y Xu, Y Zhu, J N Culver, C A Lundgren, K XU and C Wang ACS Nano 7 3627 (2013)

    Article  Google Scholar 

  11. C Bommier, W Luo, W Y Gao, A Greaney, S Ma and X Ji Carbon 76 165 (2014)

    Article  Google Scholar 

  12. I T Kim Chem. Chem. Phys. 16 12884 (2014)

    Article  Google Scholar 

  13. Wei Luo Chem. Res. 49 231 (2016)

    Article  Google Scholar 

  14. A Massaro, A B Munoz-Garcia, P Maddalena, F Bella, G Meligrana, C Gerbaldi and M Pavone Nanoscale Adv. 2 2745 (2020)

    Article  ADS  Google Scholar 

  15. A Majid and K Hussain J. Chem. 44 8910 (2020)

    Google Scholar 

  16. G Longoni Nano Lett. 17 992 (2017)

    Article  ADS  Google Scholar 

  17. https://nisihara.wixsite.com/burai

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vijayalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, S., Srinidhi, K.A. & Dharshinipriya, R.S. First-principles study of Na insertion at SiC and TiO2 anatase surfaces for Na-ion battery design. Indian J Phys 97, 1109–1115 (2023). https://doi.org/10.1007/s12648-022-02461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02461-6

Keywords

Navigation