Skip to main content

Advertisement

Log in

Modeling the temperature dependence of the density oscillation of energy states in two-dimensional electronic gases under the impact of a longitudinal and transversal quantum magnetic fields

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

At present, the interest in applied and fundamental research in the field of condensed matter physics has shifted from bulk materials to nanoscale semiconductor structures. Of particular interest are the properties of the energy spectrum of charge carriers in low-dimensional semiconductor structures exposed to a quantizing magnetic field. Quantization of the energy levels of free electrons and holes in a quantizing magnetic field leads to a significant change in the form of oscillations of the density of energy states in two-dimensional semiconductor structures. Thus, in this manuscript, we investigated the effect of the temperature and thickness of the quantum well on the oscillations of the density of energy states in the conduction band of nanoscale semiconductor structures. A new mathematical model has been developed for calculating the temperature dependence of the oscillations of the density of states in a rectangular quantum well under the influence of a transverse quantizing magnetic field. Using the proposed model, the experimental results were explained at different temperatures and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S Glutsch, F Bechstedt and Doan Nhat Quang Journal of physics: condensed matter 15 1305 (2003)

  2. G Gulyamov, A G Gulyamov and U I Erkaboev Indian Journal of Physics 93 639 (2019)

    Article  ADS  Google Scholar 

  3. I M Dubrovsky Progress in physics of metals 17 53 (2016)

  4. U I Erkaboev, G Gulyamov and R G Rakhimov Indian journal of physics 95 1959 (2021)

  5. V G Kytin, J Bisquert, I Abayev and A Zaban Physical review B 70 193304 (2004)

  6. I M Dubrovsky Condensed Matter Physics 16 13001 (2013)

  7. V A Sablikova Yu Ya Tkacha Semiconductors 52 1581 (2018)

    Article  ADS  Google Scholar 

  8. A V Krasavin et al. Review of scientific instruments 89 033907 (2018)

  9. I S Burmistrov and M A Skvortso JETP Letters 78 188 (2003)

    Article  Google Scholar 

  10. U I Erkaboev, R G Rakhimov and N A Sayidov Modern Physics Letters B 35 2150293 (2021)

    Article  ADS  Google Scholar 

  11. U I Erkaboev, G Gulyamov, J I Mirzaev, R G Rakhimov and N A Sayidov Nano 2021 2150002 (2021)

    Google Scholar 

  12. G Gulyamov, U I Erkaboev, R G Rakhimov and J I Mirzaev Journal of Nano-and Electronic Physics 12 03012 (2020)

    Google Scholar 

  13. V N Neverov, A N Titov IONTS nanotechnology and advanced materials. 71 (2008)

  14. G Gulyamov, U I Erkaboev, N A Sayidov and R G Rakhimov Journal of Applied Science and Engineering 23 453 (2020)

    Google Scholar 

  15. U I Erkaboev, G Gulyamov, J I Mirzaev and R G Rakhimov International Journal of Modern Physics B 34 2050052 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. P J Baymatov, A G Gulyamov, B T Abdulazizov, K Y Mavlyanov and M S Tokhirjonov International Journal of Modern Physics B 35 215007 (2021)

    Article  Google Scholar 

  17. G Gulyamov, U I Erkaboev and N Y Sharibaev Semiconductors 48 1287 (2014)

    Article  ADS  Google Scholar 

  18. G Gulyamov, B T Abdulazizov and P J Baymatov Journal of Nanomaterials 2021 5542559 (2021)

  19. G Gulyamov, U I Erkaboev and N Y Sharibaev Modern Physics Letters B 30 1650077 (2016)

    Article  ADS  Google Scholar 

  20. G Gulyamov, U I Erkaboev and P J Baymatov Advances in Condensed Matter Physics 2016 5434717 (2016)

    Article  Google Scholar 

  21. G Gulyamov, U I Erkaboev and A G Gulyamov Advances in Condensed Matter Physics 2017 6747853 (2017)

    Article  Google Scholar 

  22. L S Bovkun et al. V I Semiconductors 52 1386 (2018)

    Article  ADS  Google Scholar 

  23. A N Klochkov Dissertation. Ph.D. Moscow, Institute of Microwave Semiconductor Electronics RAS. 63 (2015)

  24. Zh Hou-zhi, S Aimin, Y Fu-hua and L Yue-xia Physical review B, 49 1802 (1994)

  25. P J Baymatov A G Gulyamov and B T Abdulazizov Advances in Condensed Matter Physics 2019 8317278 (2019)

    Google Scholar 

  26. P J Baymatov and B T Abdulazizov Ukrainian Journal of Physics 62 46 (2017)

    Article  Google Scholar 

  27. G Gulyamov, A G Gulyamov and U I Erkaboev Journal of nano – and electronic physics 11 01020 (2019)

  28. G Gulyamov, N Y Sharibaev and U I Erkaboev World Journal of Condensed Matter Physics 3 216 (2013)

    Article  ADS  Google Scholar 

  29. U I Erkaboev, R G Rakhimov, J I Mirzaev and N A Sayidov International Journal of Innovative Technology and Exploring Engineering 9 1557 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. I. Erkaboev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkaboev, U.I., Rakhimov, R.G., Sayidov, N.A. et al. Modeling the temperature dependence of the density oscillation of energy states in two-dimensional electronic gases under the impact of a longitudinal and transversal quantum magnetic fields. Indian J Phys 97, 1061–1070 (2023). https://doi.org/10.1007/s12648-022-02435-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02435-8

Keywords

Navigation