Skip to main content
Log in

Investigation on behavior of deceleration parameter with LRS Bianchi type-I cosmological models

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present paper compares two LRS Bianchi type-I bulk viscous models of the universe constructed in f(RT) theory of gravity. A parameterization of deceleration parameter (DP) is considered to find solutions of the models. This parameterization of DP reduces to both linear-varying deceleration parameter (LVDP) (Akarsu and Dereli in Int J Theor Phys 51:612–621, 2011) and bilinear-varying deceleration parameter (BVDP) (Mishra and Dua in Astrophys Space Sci 364:1–12, 2019) for specific values of model parameters. The cosmic evolution is discussed with the help of LVDP in model I and BVDP in model II. Both the models exhibit phase transition from early cosmic decelerated phase to the present accelerated phase. We discuss physical and geometrical properties of the models graphically and compare them in detail. In addition, best-fit values of model parameters are obtained using 51 values of observational Hubble parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A G Riess et al Astron. J. 116 1009 (1998)

    Article  ADS  Google Scholar 

  2. S Perlmutter et al Astrophys. J. 517 565 (1999)

    Article  ADS  Google Scholar 

  3. B P Schmidt et al Astrophys. J. 507 46 (1998)

    Article  ADS  Google Scholar 

  4. V Sahni et al Int. J. Mod. Phys. D 9 373 (2000)

    Article  ADS  Google Scholar 

  5. T Padmanabhan Phys. Rep. 380 235 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. P J E Peebles and B Ratra Rev. Mod. Phys. 75 559 (2003)

    Article  ADS  Google Scholar 

  7. S M Carroll Living Rev. Relativ. 4 1 (2001)

  8. R Bean, S H Hansen and A Melchiorri Phys. Rev. D 64 103508 (2001)

    Article  ADS  Google Scholar 

  9. S Hannestad and E Mörtsell Phys. Rev. D 66 063508 (2002)

    Article  ADS  Google Scholar 

  10. A Melchiorri, L Mersini, C J Ödman and M Trodden Phys. Rev. D 68 043509 (2003)

    Article  ADS  Google Scholar 

  11. T Chiba Phys. Rev. D 60 083508 (1999)

    Article  ADS  Google Scholar 

  12. L Amendola Phys. Rev. D 62 043511 (2000)

    Article  ADS  Google Scholar 

  13. R R Caldwell Phys. Lett. B 545 23 (2002)

    Article  ADS  Google Scholar 

  14. R R Caldwell, M Kamionkowski and N N Weinberg Phys. Rev. Lett. 91 071301 (2003)

    Article  ADS  Google Scholar 

  15. T Harko, F S Lobo, S I Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)

    Article  ADS  Google Scholar 

  16. R Zaregonbadi, M Farhoudi and N Riazi Phys. Rev. D 94 084052 (2016)

    Article  ADS  Google Scholar 

  17. G Sun and Y C Huang Int. J. Mod. Phys. D 25 1650038 (2016)

    Article  ADS  Google Scholar 

  18. M E S Alves et al Phys. Rev. D 94 024032 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. M Sharif and A Siddiqa Gen. Relativ. Gravit. 51 1 (2019)

    Article  Google Scholar 

  20. T Azizi Int. J. Theor. Phys. 52 3486 (2013)

    Article  Google Scholar 

  21. M Sharif, S Rani and R Myrzakulov Eur. Phys. J. Plus 128 1 (2013)

    Article  Google Scholar 

  22. C P Singh and P Kumar Eur. Phys. J. C 74 1 (2014)

    Article  Google Scholar 

  23. R K Mishra, A Chand and A Pradhan Int. J. Theor. Phys. 55 1241 (2016)

    Article  Google Scholar 

  24. P H R S Moraes and P K Sahoo Phys. Rev. D 96 044038 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. R K Mishra and H Dua Astrophys. Space Sci. 365 1 (2020)

    Article  Google Scholar 

  26. P Sahoo et al Mod. Phys. Lett. A 35 2050095 (2020)

    Article  ADS  Google Scholar 

  27. B Mishra, S K Tripathy and S Tarai J. Astrophys. Astron. 42 1 (2021)

    Article  ADS  Google Scholar 

  28. P K Sahoo, P Sahoo and B K Bishi Int. J. Geom. Methods M 14 1750097 (2017)

    Google Scholar 

  29. P K Sahoo, S K Tripathy and P Sahoo Mod. Phys. Lett. A 33 1850193 (2018)

    Article  ADS  Google Scholar 

  30. R K Tiwari, A Beesham and B Shukla Int. J. Geom. Methods M 15 1850115 (2018)

    Google Scholar 

  31. R K Mishra and H Dua Astrophys. Space Sci. 366 1 (2021)

    Article  ADS  Google Scholar 

  32. M A Bakry, G M Moatimid and A T Shafeek Indian J. Phys. 96 619 (2021)

  33. M S Berman Nuovo Cimento B 74 182 (1983)

    Article  ADS  Google Scholar 

  34. V Singh and A Beesham Gen. Relativ. Gravit. 51 1 (2019)

    Article  Google Scholar 

  35. \(\ddot{O}\) Akarsu and T Dereli Int. J. Theor. Phys. 51 612 (2012)

  36. R K Mishra and A Chand Astrophys. Space Sci. 361 1 (2016)

    Article  Google Scholar 

  37. G P Singh and B K Bishi Adv. High Energy Phys. 2017 (2017)

  38. P K Sahoo et al New Astron. 60 80 (2018)

    Article  ADS  Google Scholar 

  39. R K Mishra, H Dua and A Chand Astrophys. Space Sci. 363 1 (2018)

    Article  Google Scholar 

  40. R K Mishra and H Dua Astrophys. Space Sci. 364 1 (2019)

    Article  Google Scholar 

  41. C Eckart Phys. Rev. 58 919 (1940)

    Article  ADS  Google Scholar 

  42. I Waga, R C Falcao and R Chanda Phys. Rev. D 33 1839 (1986)

    Article  ADS  Google Scholar 

  43. J D Barrow Phys. Lett. B 180 335 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  44. W Zimdahl et al Phys. Rev. D 64 063501 (2001)

    Article  ADS  Google Scholar 

  45. I Brevik O Gorbunova Gen. Relativ. Gravit. 37 2039 (2005)

    Article  ADS  Google Scholar 

  46. I Brevik et al Int. J. Mod. Phys. D 26 1730024 (2017)

    Article  ADS  Google Scholar 

  47. A Atreya, J R Bhatt and A Mishra J. Cosmol. Astropart. P. 2018 024 (2018)

    Article  Google Scholar 

  48. S Arora, S Bhattacharjee and P K Sahoo New Astron. 82 101452 (2021)

    Article  Google Scholar 

  49. B Saha and G N Shikin Gen. Rel. Grav. 29 1099 (1997)

    Article  ADS  Google Scholar 

  50. B Saha Mod. Phys. Lett. A20 2127 (2005)

    Article  ADS  Google Scholar 

  51. A Al Mamon and S Das Eur. Phys. J. C 77 1 (2017)

    Article  Google Scholar 

  52. M Visser Classical Quant. Grav. 21 2603 (2004)

    Article  ADS  Google Scholar 

  53. V Sahni, T D Saini, A A Starobinsky and U Alam J. Exp. Theor. Phys. 77 201 (2003)

    Article  Google Scholar 

  54. J Magana et al Mon. Not. R. Astron. Soc. 476 1036 (2018)

    Article  ADS  Google Scholar 

  55. C L Bennett et al Astrophys. J. Supp. S. 208 20 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or competing interests that could have influenced the work reported in this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Dua, H. Investigation on behavior of deceleration parameter with LRS Bianchi type-I cosmological models. Indian J Phys 97, 993–1006 (2023). https://doi.org/10.1007/s12648-022-02412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02412-1

Keywords

Navigation