Skip to main content
Log in

The half-metallic characteristic of Cr-doped rutile germanium oxide-based dilute magnetic semiconductor predicted by first-principles calculations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper reported on the theoretical investigations with first principle calculations on the electronic and band structure properties of Cr-doped GeO2 rutile. Firstly, it discussed the half-metallic characteristics of rutile GeO2 (r-GeO2) bulk crystal when this latter is doped with 3d-Cr transition metal. Secondly, and to understand the impact of doping Cr impurity, three amounts of Cr of 2, 6 and 10% were inserted in the r-GeO2 lattice which showed how doping can improve the magnetic properties of the obtained dilute magnetic semiconductor. The theoretical calculations were performed in the general framework of the density functional theory within the Korringa–Kohn–Rostoker approach combined with the coherent potential approximation. We adopted the local density approximation (LDA) as well as the self-interaction corrected LDA (LDA-SIC) to account for the exchange and correlation in the strong correlated electron systems. Based on calculations within LDA and LDA-SIC approximations, it was found that the compound behaves as half-metal material. Moreover, we have studied the interaction responsible of magnetism using both LDA and LDA-SIC approximations. In addition, we calculated the exchange coupling parameters of the classical Heisenberg model and studied the X-ray absorption spectrum at the K-edge of Ge1−xCrxO2. The obtained values of Curie temperature were found above the ambient value once doping concentration exceeds 6%. Hence, it can be inferred that Cr-doped r-GeO2 presents a good potential as a practical spintronic material when the doping concentration is greater than or equal to 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G Binash, P Grünberg, F Saurenbach et al Phys. Rev. B 39 4828 (1989)

    Article  Google Scholar 

  2. N F Mott Proc. Roy. Soc. A 153 699 (1936)

    Google Scholar 

  3. B Loegel and F Gautier J. Phys. Chem. Sol. 32 2723 (1971)

    Article  Google Scholar 

  4. E L Nagaev Phys. Stat. Sol. B 145 11 (1988)

    Article  Google Scholar 

  5. C Haas CRC Crit. Rev. Solid State Sci. 1 47 (1970)

    Article  Google Scholar 

  6. L Esaki and P J Stiles Rev. Lett. 19 852 (1967)

    Article  Google Scholar 

  7. H Ohno and H Munekata J. Appl. Phys. 69 6103 (1991)

    Article  Google Scholar 

  8. T Dietl J. Appl. Phys. 89 7437 (2001)

    Article  Google Scholar 

  9. Y J Matsumoto et al Science 291 854 (2001)

    Article  Google Scholar 

  10. Y Matsumoto et al Jpn J. Appl. Phys. 40 L1204 (2001)

    Article  Google Scholar 

  11. K Sato et al Rev. Mod. Phys. 82 1633 (2010)

    Article  Google Scholar 

  12. Y Yuan et al Phys. Rev. Mater. 2 114601 (2018)

    Article  Google Scholar 

  13. Y Xu, D D Awschalom and J Nitta Handbook of Spintronics (Berlin: Springer) (2015)

    Google Scholar 

  14. E Y Tsymbal and I Žutic Spintronics Handbook, 2nd edn. (Boca Raton: CRC Press, Taylor and Francis Group) (2019)

    Google Scholar 

  15. J M D Coey and M Venkatesan J. Appl. Phys. 91 8345 (2002)

    Article  Google Scholar 

  16. J M D Coey and S Sanvito J. Phys. Appl. Phys. 37 988 (2004)

    Article  Google Scholar 

  17. S M Griffin and J B Neaton Phys. Rev. Mater. 1 044401 (2017)

    Article  Google Scholar 

  18. M Ashton, D Gluhovic, S B Sinnott, J Guo, D A Stewart and R G Hennig Nano Lett. 17 5251 (2017)

    Article  Google Scholar 

  19. R A De Groot, F M Mueller, P G van Engen and K H J Buschow Phys. Rev. Lett. 50 2024 (1983)

    Article  Google Scholar 

  20. I V Solovyev, I V Kashin and V V Mazurenko Phys. Rev. 92 144407 (2015)

    Article  Google Scholar 

  21. F Goumrhar, L Bahmad, O Mounkachi and A Benyoussef Comput. Condens. Matter 16 e00361 (2018)

    Google Scholar 

  22. S G Bhat and P S A Kumar AIP Adv. 6 056308 (2016)

    Article  Google Scholar 

  23. J H Park, E Vescovo, H J Kim, C Kwon, R Ramesh and T Venkatesan Nature 392 794 (1998)

    Article  Google Scholar 

  24. P Velasco, J A Alonso, M T Casais and M J Martínez-Lope J. Phys. Condens. Matter 16 8725 (2004)

    Article  Google Scholar 

  25. D D Sarma, P Mahadevan, T Saha-Dasgupta, S Ray and A Kumar Phys. Rev. Lett. 85 2549 (2000)

    Article  Google Scholar 

  26. B Santara, B Pal and P K Giri J. Appl. Phys. 110 114322 (2011)

    Article  Google Scholar 

  27. J Vecchietti, A Bonivardi, W Xu, D Stacchiola and J J Delgado ACS Catal. 4 2088 (2014)

    Article  Google Scholar 

  28. Y Fu, N Sun, L Feng, S Wen, Y An and J Liu J. Alloys Compd. 698 863 (2017)

    Article  Google Scholar 

  29. A M H R Hakimi, F Schoofs, M G Blamire, S Langridge and S S Dhesi Adv. Cond. Matter Phys. 7 2836254 (2017)

    Google Scholar 

  30. G Wei et al J. Alloys Compd. 695 2261 (2017)

    Article  Google Scholar 

  31. H Zhang, X Ouyang, B Yang, R Lutes and Y Ni Ceram. Int. 44 6362 (2018)

    Article  Google Scholar 

  32. L Le, J Xu, Z Zhou, H Wang, R Xiong and J Shi Mater Res. Bull. 102 337 (2018)

    Article  Google Scholar 

  33. W Chen, X Liu, S Zhuo, J Chai and T Xu Int. J. Magn. Electromag. 4 013 (2018)

    Google Scholar 

  34. A Samanta, M N Goswami and P K Mahapatra J. Alloys Compd. 730 399 (2018)

    Article  Google Scholar 

  35. F Goumrhar, O Arybou, E Salmani, L Bahmad and H Ez-Zahraouy A Benyoussef J. Supercond. Nov. Magn. 32 2275 (2019)

    Article  Google Scholar 

  36. K Bhat, S V Urs and V Kamble J. Appl. Phys. 123 161518 (2018)

    Article  Google Scholar 

  37. D P Rai, A Laref, A Shankar, A P Sakhya, R Khenata and R K Thapa J. Phys. Chem. Solids 120 104 (2018)

    Article  Google Scholar 

  38. R Mukherji, V Mathur and M Mukherji J. Nano Electr. Phys. 10 05008 (2018)

    Google Scholar 

  39. Y Huang, Z Chen, X Zhang, X Wang, Y Zhi, Z Wu et al J. Semicond. 39 053002 (2018)

    Article  Google Scholar 

  40. D Ozaslan, O M Ozkendir, M Gunes, Y Ufuktepe and C Gumus Optik 157 1325 (2018)

    Article  Google Scholar 

  41. I S Brandt et al J. Magn. Magn. Mater. 441 374 (2017)

    Article  Google Scholar 

  42. Z Bounouala, F Goumrhara, L B Drissi and R Ahl Laamara Comput Conden. Matter 27 e00553 (2021)

    Article  Google Scholar 

  43. M Sahnoun, C Daul, R Khenata and H Baltache Eur. Phys. J. B 45 455 (2005)

    Article  Google Scholar 

  44. E Ghobadi and J A Capobianco Phys. Chem. Chem. Phys. 2 5761 (2000)

    Article  Google Scholar 

  45. J S Li and D G Jia Trans. Tianjin Univ. 15 222 (2009)

    Article  Google Scholar 

  46. H P Xia, J L Zhang, J H Wang and Y P Zhang Acta Opt. Sin. 25 1515 (2005)

    Google Scholar 

  47. Y Yang, G Y Zhou, Z Y Hou, J H Du and L T Hou Chin. J. Lasers 31 301 (2004)

    Google Scholar 

  48. N M Ravindra, R A Weeks and D L Kinser Phys. Rev. B 36 6132 (1987)

    Article  Google Scholar 

  49. S Sebastiani et al Opt. Express 13 1696 (2005)

    Article  Google Scholar 

  50. K H Smith, E Shero, A Chizmeshya and G H Wolf J. Chem. Phys. 102 6851 (1995)

    Article  Google Scholar 

  51. H Takahashi et al Opt. Lett. 11 383 (1986)

    Article  Google Scholar 

  52. V L Moruzzi, J F Janak and A R Williams Pergamon Press, New York (1978)

  53. H Akai, MACHIKANEYAMA2002v08, Department of Physics, Graduate School of Science, Osaka University, Machikaneyama–1, Toyonaka 560–0043, Japan

  54. M Toyoda, H Akai, K Sato and H Katayama-Yoshida Phys. B Conds. Matt. 376 647 (2006)

    Article  Google Scholar 

  55. O Gunnarsson and R O Jones Phys. Rev. B 31 7588 (1985)

    Article  Google Scholar 

  56. R O Jones and O Gunnarsson Reviews of Modern Physics 61 689 (1989)

    Article  Google Scholar 

  57. J Harris and R O Jones J. Chem. Phys. 68 3316 (1978)

    Article  Google Scholar 

  58. R O Jones J. Chem. Phys. 71 1300 (1979)

    Article  Google Scholar 

  59. O Gunnarsson and R O Jones J Chem. Phys. 72 5357 (1980)

    Article  Google Scholar 

  60. F Goumrhar, L Bahmad, O Mounkachi and A Benyoussef Int. J. Mod. Phys. B 31 1850025 (2017)

    Google Scholar 

  61. Y Chen, D M Bagnall, Z Zhu, T Sekiuchi, K-T Park, K Hiraga et al J. Cryst. Growth 181 165 (1997)

    Article  Google Scholar 

  62. M Micoulaut, L Cormier and G S Hendersen J. Phys. Condens. Matter 18 R753 (2006)

    Article  Google Scholar 

  63. A A Bolzan, C Fong, B J Kennedy and C J Howard Acta Crystallogr. B 53 373 (1997)

    Article  Google Scholar 

  64. S Gordon Smith and B Patricia Isaaacs J. Acta Cryst. 17 842 (1964)

    Article  Google Scholar 

  65. Q J Liu, Z T Liu, L P Feng and H Tian Solid State Sci. 12 1748 (2010)

    Article  Google Scholar 

  66. J Robertson J Phys C Solid State Phys. 12 4767 (1979)

    Article  Google Scholar 

  67. C Sevik and C Bulutay J. Mater Sci. 42 6555 (2007)

    Article  Google Scholar 

  68. M Grimsditch, A Polian, V Brazhkin and D Balitskii J. Appl. Phys. 83 3018 (1998)

    Article  Google Scholar 

  69. K Momma and F Izumi J. Appl. Crystal. 44 1272 (2011)

    Article  Google Scholar 

  70. S Chae, J Lee, K A Mengle, J T Heron and E Kioupakis Appl. Phys. Lett. 114 102104 (2019)

    Article  Google Scholar 

  71. M Stapelbroeck and B D Evans Solid State Commun. 25 959 (1978)

    Article  Google Scholar 

  72. F Goumrhar, O Mounkachi, L Bahmad, E Salmani and A Benyoussef Appl. Phys. A 126 9 (2020)

    Article  Google Scholar 

  73. N Mediane, F Goumrhar, L B Drissi, K Htoutou and R Ahl Laamara J. Supercond. Nov. Magn. 33 2513 (2020)

    Article  Google Scholar 

  74. T El-Achari, F Goumrhar, L B Drissi and R Ahl Laamara Phys. B Cond. matter 601 412443 (2020)

    Article  Google Scholar 

  75. K Sato and H Katayama-Yoshida J. Non. Cryst. Solids 358 2377 (2012)

    Article  Google Scholar 

  76. A I Liechtenstein, M I Katsnelson, V P Antropov and V A Gubanov J. Magn. Magn. Mater 67 65 (1987)

    Article  Google Scholar 

  77. W Ouerghui, H Ben Abdallah and K Ben Saad Phys. Status Solidi B 254 1700115 (2017)

    Article  Google Scholar 

  78. K Sato, P H Dederics and H Katayama-Yoshida Europhys. Lett. 61 403 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

It is of our duty to be grateful to professor Akai et al. for their great invention of the Machikaneyama code. Our thanks should also go to every contributor that pays attention to the improvement of this code to allow determination of novel physical properties and complicated systems. Finally, thanks to Professor Salmani for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Labrag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labrag, A., Bghour, M., Salmani, E. et al. The half-metallic characteristic of Cr-doped rutile germanium oxide-based dilute magnetic semiconductor predicted by first-principles calculations. Indian J Phys 96, 4193–4202 (2022). https://doi.org/10.1007/s12648-022-02372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02372-6

Keywords

Navigation