Skip to main content
Log in

A force-balance model for centrosome positioning and spindle elongation during interphase and anaphase B

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A computational model in one dimension is proposed to position a single centrosome using astral microtubules (MTs) interacting with the cell cortex. The mechanism exploits mutually antagonistic pulling and pushing forces arising from the astral MTs’ binding to cortical dynein motors in the actin-rich cell cortex and their buckling while growing against the cell cortex, respectively. The underlying mechanism is extended to account for the elongation and positioning of the bipolar spindle during mitotic anaphase B. Besides astral MTs, the model for bipolar spindle involves interpolar microtubules (IPMTs). The composite model can predict spindle elongation and position under various circumstances. The outcome reveals that the bipolar spindle elongation, weakened by decreasing overlap between the antiparallel IPMTs in the spindle mid-zone, is recovered by the astral MTs. The one-dimensional models are extended in two dimensions to include the effect of cortical sliding of the astral MTs for studying the dynamics of the interphase centrosome and the anaphase B spindles in elongated cells. The results reveal that the dynamics in two dimensions stay qualitatively similar to the one dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Kirschner and T. Mitchison, Cell 45 329 (1986).

    Article  Google Scholar 

  2. A. Burakov, E. Nadezhdina, B. Slepchenko, and V. Rodionov, J Cell Biol 162 963 (2003).

    Article  Google Scholar 

  3. I. M. Tolic-Norrelykke, Eur Biophys J. 37 1271 (2008).

    Article  Google Scholar 

  4. N. Pavin and I. M. Tolic-Norrelykke, Syst Synth Biol. 8 1103 (2014).

    Article  Google Scholar 

  5. N. R. Adames and J. A. Cooper, Molecular Biology of the Cell 149 863 (2000).

    Google Scholar 

  6. A. Sarkar, R. Paul, and H. Rieger, Biophysical Journal 116 2079 (2019).

    Article  ADS  Google Scholar 

  7. S. Chatterjee, A. Sarkar, J. Zhu, A. Khodjakov, A. Mogilner, and R. Paul, Biophysical Journal 119 434 (2020).

    Article  ADS  Google Scholar 

  8. J. R. McIntosh, M. I. Molodtsov, and F. I. Ataullakhanov, Q Rev. Biophys. 45 147 (2012).

    Google Scholar 

  9. J. Howard and C. Garzon-Coral, BioEssays 39 1 (2017).

    Article  Google Scholar 

  10. M. Vleugel, M. Kok, and M. Dogterom, Cell Adhesion & Migration 10 475 (2016).

    Article  Google Scholar 

  11. J. Zhu, A. Burakov, V. Rodionov, and A. Mogilner, Molecular Biology of the Cell 21 4418 (2010).

    Article  Google Scholar 

  12. G. Letort, F. Nedelec, L. Blanchoin, and M. Théry, Molecular Biology of the Cell 27 2833 (2016).

    Article  Google Scholar 

  13. L. Laan et al. Cell 148 502 (2012).

    Article  Google Scholar 

  14. K. Kimura and A. Kimura, BioArchitecture 1 74 (2011).

    Article  Google Scholar 

  15. I. V. Maly, Commun Integr Biol 4 230 (2011).

    Article  Google Scholar 

  16. F. J. McNally, J Cell Biol 200 131 (2013).

    Article  Google Scholar 

  17. S. W. Grill and A. A. Hyman, Developmental Cell 8 461 (2005).

    Article  Google Scholar 

  18. A. M. Saunders, J. Powers, S. Strome, and W. M. Saxton, Current Biology 17 (2007).

  19. S. W. Grill, J. Howard, E. Schaffer, E. H. K. Stelzer, and A. A. Hyman, Science 301 518 (2003).

    Article  ADS  Google Scholar 

  20. T. Nguyen-Ngoc, K. Afshar, and P. Gonczy, Nat Cell Biol. 9 1294 (2007).

    Article  Google Scholar 

  21. C. Kozlowski, M. Srayko, and F. Nedelec, Cell 129 499 (2007).

    Article  Google Scholar 

  22. M. Dogterom and B. Yurke, Science 278 856 (1997).

    Article  ADS  Google Scholar 

  23. P. T. Tran, L. Marsh, V. Doye, S. Inoué, and F. Chang, J Cell Biol 153 397 (2001).

    Article  Google Scholar 

  24. D. R. Drummond and R. A. Cross, Curr Biol 10 766 (2000).

    Article  Google Scholar 

  25. J. Fu, I. M. Hagan, and D. M. Glover, Cold Spring Harb Perspect Biol. 7 (2015).

  26. T. Stearns, Cell 105 417 (2001).

    Article  Google Scholar 

  27. S. L. Prosser and L. Pelletier, Nature Reviews Molecular Cell Biology 18 187 (2017).

    Article  Google Scholar 

  28. A. Mogilner, R. Wollman, G. Civelekoglu-Scholey, and J. Scholey, Trends in Cell Biology 16 88 (2006).

    Article  Google Scholar 

  29. Y. Li, W. Yu, Y. Liang, and X. Zhu, Cell Research 17 701-712 (2007).

    Article  Google Scholar 

  30. H. Maiato, A. M. Gomes, F. Sousa, and M. Barisic, biology 6 13 (2016).

  31. I. Brust-Mascher and J. M. Scholey, Biochem Soc Trans 39 1149 (2011).

    Article  Google Scholar 

  32. K. Vukusic, R. Buda, and I. M. Tolic, J Cell Sci 132 jcs231985 (2019).

  33. J.-C. Labbe, E. K. McCarthy, and B. Goldstein, J. Cell Biol. 167 245 (2004).

    Article  Google Scholar 

  34. C. Garzon-Coral, H. A. Fantana, and J. Howard, Science 352 1124-1127 (2016).

    Article  ADS  Google Scholar 

  35. I. Brust-Mascher, G. Civelekoglu-Scholey, M. Kwon, A. Mogilner, and J. M. Scholey, PNAS 101 15938 (2004).

    Article  ADS  Google Scholar 

  36. A. F. Straight, J. W. Sedat, and A. W. Murray, J Cell Biol. 143 687-694 (1998).

    Article  Google Scholar 

  37. C. J. Hogan, H. Wein, L. Wordeman, J. M. Scholey, K. E. Sawin, and W. Z. Cande, PNAS 90 6611-6615 (1993).

    Article  ADS  Google Scholar 

  38. I. Brust-Mascher and J. M. Scholey, Mol Biol Cell. 13 3967-3975 (2002).

    Article  Google Scholar 

  39. J. R. Aist, H. Liang, and M. W. Berns, J. Cell Sci. 104 1207 (1993).

    Article  Google Scholar 

  40. G. Fink, I. Schuchardt, J. Colombelli, E. Stelzer, and G. Steinberg, The EMBO Journal 25 4897 (2006).

    Article  Google Scholar 

  41. Y. Hara and A. Kimura, Current Biology 19 1549 (2009).

    Article  Google Scholar 

  42. T. Mitchison and M. Kirschner, Nature 312 237 (1984).

    Article  ADS  Google Scholar 

  43. M. Dogterom and S. Leibler, Phys Rev Lett. 70 1347 (1993).

    Article  ADS  Google Scholar 

  44. F. Verde, M. Dogterom, E. Stelzer, E. Karsenti, and S. Leibler, J. Cell Biol. 118 1097 (1992).

    Article  Google Scholar 

  45. S. Som, S. Chatterjee, and R. Paul, Physical Review E 99 1 (2019).

    Article  Google Scholar 

  46. S. Sutradhar, V. Yadav, S. Sridhar, L. Sreekumar, D. Bhattacharyya, S. K. Ghosh, R. Paul, and K. Sanyal, Molecular Biology of the Cell 26 3954 (2015).

    Article  Google Scholar 

  47. D. N. Mastronarde, K. L. McDonald, R. Ding, and J. R. McIntosh, J Cell Biol 123 1475 (1993).

    Article  Google Scholar 

  48. E. N. Cytrynbaum, J. M. Scholey, and A. Mogilner, Biophys J. 84 757 (2003).

    Article  ADS  Google Scholar 

  49. M. J. Schnitzer, K. Visscher, and S. M. Block, Nature Cell Biology 2 718 (2000).

    Article  Google Scholar 

  50. D. Cole, W. Saxton, K. Sheehan, and J. Scholey, J Cell Biol 269 P22913 (1994).

    Google Scholar 

  51. D. J. Sharp et al. J Cell Biol 144 125 (1999).

    Article  Google Scholar 

  52. R. Mallik, B. C. Carter, S. A. Lex, S. J. King, and S. P. Gross, Nature 427 649 (2004).

    Article  ADS  Google Scholar 

  53. G. Civelekoglu-Scholey, D. J. Sharp, A. Mogilner, and J. M. Scholey, Biophys J. 90 3966 (2006).

    Article  ADS  Google Scholar 

  54. N. M. Rusan, U. S. Tulu, C. Fagerstrom, and P. Wadsworth, J Cell Biol 158 997 (2002).

    Article  Google Scholar 

  55. A. J. Zwetsloot, G. Tut, and A. Straube, Essays Biochem. 62 725 (2018).

    Article  Google Scholar 

  56. B. L. Sprague, C. G. Pearson, P. S. Maddox, K. S. Bloom, E. D. Salmon, and D. J. Odde, Biophysical Journal 84 3529 (2003).

    Article  ADS  Google Scholar 

  57. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (2nd Ed.): The Art of Scientific Computing (Cambridge University Press, USA, 1992), ISBN 052143064X.

  58. R. Farhadifar et al. eLife 9 e55877 (2020).

  59. D. Ghanti, R. W. Friddle, and D. Chowdhury, Physical Review E 98 (2018).

  60. M. S. Hamaguchi and Y. Hiramoto, Development 28 (1986).

  61. M. Wuhr, E. S. Tan, S. K. Parker, H. W. Detrich, and T. J. Mitchison, Curr Biol. 20 2040 (2010).

    Article  Google Scholar 

  62. K. Vukusic and I. M. Tolic, Seminars in Cell & Developmental Biology 117 127 (2021).

    Article  Google Scholar 

  63. R. Basto, K. Brunk, T. Vinadogrova, N. Peel, A. Franz, A. Khodjakov, and J. W. Raff, Cell 133 1032 (2008).

    Article  Google Scholar 

  64. M. Kwon et al. Genes Dev. 22 2189 (2008).

    Article  Google Scholar 

  65. N. P.Ferenz, R. Paul, C. Fagerstrom, A. Mogilner, and P. Wadsworth, Current Biology 19 1833 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alex Mogilner for his careful readings of the manuscript and fruitful suggestions for its improvement. A.M. thanks the Indian Association for the Cultivation of Science (IACS), Kolkata, for support. A.S. was supported by a fellowship from the University Grants Commission (UGC), India. R.P. thanks IACS for support and Grant No. EMR/2017/001346 of SERB, DST, India for the computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: proportional pulling and buckling forces from cortex is essential for centrosome centering with short astral MTS

Fig. 10
figure 10

Single CS positioning in a \(60 \;\; \mu m\) cell with short astral MTs (average length \(40 \;\; \mu m\)), plotted for intial CS positions at \(5\; \mu m\), \(15\; \mu m\), \(25\; \mu m\) and \(35\; \mu m\) away from the left cortex. (a) The mean centrosomal position for large buckling amplitude and dynein density. (b) Mean centrosomal position for small buckling amplitude and dynein density

Earlier, we reported a single CS position away from the cell center with short astral MTs and a given set of interaction parameters, as shown in Fig. 5(a). This occurred because the force balance in either half of the cell was dominated by forces arising from the cortex within the same half, and contribution from the other half was insignificant. To achieve centering, the net pushing force arising from both the cortex must be comparable. One possible way of achieving this is to increase the buckling amplitude while keeping the dynein density unchanged. This would facilitate more pushing force for the same microtubule length, allowing the CS to counter dynein-mediated pulling force at larger distances from the cell cortex. Another way is to decrease the dynein density on the cortex so that the CS experiences less pull toward the cortex for the same distance from the cortex. Based on these hypotheses, we simulated the model with large buckling amplitude and dynein density (see Fig. 10(a)) and small buckling amplitude and dynein density (see 10(b)). In both cases, we found CS could position at the cell center, suggesting proportional buckling and pulling forces from the cell cortex is essential for CS centering with short astral MTs.

Appendix II: symmetric positioning of the bipolar spindle with initially asymmetric poles

Fig. 11
figure 11

Symmetric positioning of poles that were asymmetrically placed at \(t=0 \; s\). (a) Final positioning and length of the spindle remain unaffected for varying initial positions of individual poles; (b) Pole separation kinetics for short astral MTs indicating that the symmetric positioning of the poles remain unaffected even when short astral MTs are present in the system

Figure 11 shows dynamics of individual poles when placed asymmetrically at \(t=0\; s\) for normal and short astral MTs respectively. Asymmetric positioning of the poles refers to the initial spindle’s center shifted away from the cell center. In other words, one of the poles is closer to the cortex than the other at the onset of spindle elongation. In Fig. 11(a) we show spindle elongation dynamics of two sets of poles placed asymmetrically on either side of the cell. Data shows that the pole closer to the cell cortex moves relatively less and is positioned rapidly than the one away from the cortex. However, the final positioning of the spindle is symmetric with respect to the cell center. This occurs due to the uniform dynein density and astral MTs buckling on either side of the bipolar spindle. The spindle separation kinetics is slightly delayed with short astral MTs, as shown in Fig. 11(b). Nevertheless, the final spindle positioning and interpolar distance remain the same as observed with normal astral MTs.

Appendix III: single cs positioning with stoichiometric interaction between astral MTS and cortical dynein motors in absence of buckling mediated pushing force

Fig. 12
figure 12

Centering of a single CS is achieved only with pulling forces; stoichiometric interaction between astral MTs and cortical dynein motors is enforced by fixing the number of cortical motors per astral MT interacting with the cortex


Stoichiometric interaction between astral MTs and cortical dynein motors was suggested in a recent study [58] to facilitate cortical pulling force that can dominate the positioning of CS in a cell. Here, we explore a similar scenario, including stoichiometric interaction between the astral MTs and the cortical motors for positioning a single CS in elliptic cells. Such interactions call for a fixed number of cortical force generators per astral MT. In our original model, we evaluated the cortical pulling force using Eq. 23, which depends on MT length and the linear density of dynein motors given by \(k_{dyn}\). We fix the number of dynein motors that each MT interacts with to ensure stoichiometric relation. The recent study [58] investigated this interaction using a 1 : 1 ratio, meaning that each MT interacts with a single cortical force generator (i.e., dynein motor). We explore the impact of a larger ratio of \(1:k_{dyn}\) (\(k_{dyn}=5\)) on the CS dynamics, meaning that each MT has to interact with \(k_{dyn}\) number of motors. This causes the pulling force exerted by each MT evaluated by counting the number of motors \(k_{dyn}\) per MT where the force exerted by each motor is \(F_{dyn}\). The parameters are stated in Table 1. Therefore, with stoichiometric interaction, the pulling force exerted by each astral MT interacting with the cortex remains the same, irrespective of its sliding length along the cortex. Therefore, even when the CS is placed near the cell cortex, the force on it from the proximal wall does not increase monotonically due to a limited number of dynein motors on each MT. As shown in Fig. 12, the CS, when placed on the cell axis at \(5\; \mu m\) and \(35\;\mu m\), experiences a net pull toward the proximal cell cortex but eventually gets pulled toward the cell center due to the pull from the distal cell cortex. A similar outcome is observed when the CS is placed slightly off the cell center, at \(15\;\mu m\) and \(25\;\mu m\). This points to the force contribution from the distal cortex dominating the CS trajectory until a force balance occurs at the cell center.

Initially, the MTs emanating from the CS toward the proximal cell cortex are the primary force contributors that pull the CS towards the proximal cortex (Fig.12). When the CS advances towards the proximal cell cortex, more MTs emanating from it and interacting with the proximal wall become obliquely aligned with the centrosomal axis. This is because the astral MTs that interact with the cortex remain anchored at the cortex while the CS advances toward the proximal wall along the cellular axis. As a consequence of increasing oblique astral MTs, the magnitude of the horizontal force components contributing to the pull on the CS starts decreasing. At the same time, MTs emanating from the CS toward the distal cortex greatly align with the x-axis, increasing horizontal pulling force toward the distal cortex. Once the pulling force acting on the CS from the distal cell cortex becomes stronger than the proximal cortex, CS moves toward the cell center, as shown in Fig. 12. This eventually leads to a force balance, stabilizing the CS at the cell center. For the CS starting at the \(20\; \mu m\) mark, the horizontal components of the pulling forces coming from the opposite cortex are comparable, localizing the CS at the cell center. Therefore, our model for the CS positioning allows for dynein-mediated positioning of the CS at the cell center, when a stoichiometric ratio fixes the number of cortical motors per MT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, A., Sarkar, A. & Paul, R. A force-balance model for centrosome positioning and spindle elongation during interphase and anaphase B. Indian J Phys 96, 2667–2691 (2022). https://doi.org/10.1007/s12648-022-02309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02309-z

Keywords

Navigation