Skip to main content
Log in

Probing the microscopic structure and flexibility of oxidized DNA by molecular simulations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The oxidative damage of DNA is a compelling issue in molecular biophysics as it plays a vital role in the epigenetic control of gene expression and is believed to be associated with mutagenesis, carcinogenesis and aging. To understand the microscopic structural changes in physical properties of DNA and the resulting influence on its function due to oxidative damage of its nucleotide bases, we have conducted all-atom molecular dynamic simulations of double-stranded DNA (dsDNA) with its guanine bases being oxidized. The guanine bases are more prone to oxidative damage due to the lowest value of redox potential among all nucleobases. We have analyzed the local as well as global mechanical properties of native and oxidized dsDNA and explained those results by microscopic structural parameters and thermodynamic calculations. Our results show that the oxidative damage of dsDNA does not deform the Watson-Crick geometry; instead, the oxidized DNA structures are found to be better stabilized through electrostatic interactions. Moreover, oxidative damage changes the mechanical, helical and groove parameters of dsDNA. The persistence length, stretch modulus and torsional stiffness are found to be 48.87 nm, 1239.26 pN and 477.30 pN.nm\(^2\), respectively, for native dsDNA and these values are 61.31 nm, 659.91 pN and 407.79 pN.nm\(^2\), respectively, when all the guanine bases of the dsDNA are oxidized. Compared to the global mechanical properties, the changes in helical and groove properties are found to be more prominent, concentrated locally at the oxidation sites and causing the transition of the backbone conformations from BI to BII at the regions of oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A R Poetsch, Comput. Struct. Biotechnol. J 18 207 (2020)

    Article  Google Scholar 

  2. S Steenken, and S V Jovanovic, J. Am. Chem. Soc. 119 617 (1997).

    Article  Google Scholar 

  3. P Diamantis, I Tavernelli, and U Rothlisberger, J. Chem. Theory Comput. 16 6690 (2020).

    Article  Google Scholar 

  4. J M Berg, J L Tymoczko, and L Stryer, Biochemistry. 5th edition (W H Freeman; New York, 2002) Chap. 18

  5. M S Cooke, M D Evans, M Dizdaroglu, and J Lunec, FASEB J. 17 1195 (2003).

    Article  Google Scholar 

  6. D M Mutat Res. 275, 331 (1992 Sep).

  7. A E Aust, and J F Eveleigh, Proc. Soc. Exp. Biol. Med. 222 246 (1999).

    Article  Google Scholar 

  8. H Kasai, Genes, and Environ 38 (2016).

  9. R P Koirala, R Pokhrel, P Baral, P B Tiwari, PP Chapagain, and N P Adhikari, Biol. Chem. 402 1203 (2021)

    Article  Google Scholar 

  10. S Kumar, V Chinnusamy, and T Mohapatra, Front. Genet. 9 640 (2018)

    Article  Google Scholar 

  11. B van Loon, E Markkanen, and U Hübscher, DNA Repair 9 604 (2010)

    Article  Google Scholar 

  12. P Fortini, B Pascucci, E Parlanti, M D’Errico, V Simonelli, and E Dogliotti, Mutation Res./Fund. Molec. Mechan. Mutagen. 531 127 (2003)

    Article  Google Scholar 

  13. V Van Ruyskensvelde, F Van Breusegem, and K Van Der Kelen, Free Radical Biol. Med. 122 181 (2018).

    Article  Google Scholar 

  14. T Pfaffeneder, F Spada, M Wagner, et al. Nat. Chem. Biol. 10 574 (2014).

    Article  Google Scholar 

  15. V Pastukh, J T Roberts, D W Clark, et al. Am J Physiol Lung Cell Mol Physiol. 309 L1367–L1375 (2015).

    Article  Google Scholar 

  16. S Reuter, S C Gupta, M M Chaturvedi, and B B Aggarwal, Free Radical Biol. Med. 49 1603 (2010)

    Article  Google Scholar 

  17. C A Massaad, and E Klann, Antioxid. Redox Signal. 14 2013 (2011)

    Article  Google Scholar 

  18. T F Beckhauser, J Francis-Oliveira, and R D Pasquale, J. Exper. Neurosci. 10s1 JEN.S39887 (2016)

  19. T T Ngo, J Yoo, Q Dai, et al. Nat. Commun. 7 10813 (2016)

    Article  ADS  Google Scholar 

  20. J Peters, L Mogil, M McCauley, M Williams, and L Maher, Biophys. J. 107 448 (2014)

    Article  Google Scholar 

  21. J P Peters, S P Yelgaonkar, S G Srivatsan, Y Tor, and L James Maher III Nucleic Acids Res. 41 10593 (2013)

  22. K Liebl, and M Zacharias Nucleic Acids Res. 47 1132 (2018)

    Article  Google Scholar 

  23. J H. Miller, C C P Fan-Chiang, T P Straatsma, and M A Kennedy J. Am. Chem. Soc. 125 6331 (2003)

    Article  Google Scholar 

  24. M Kara, and M Zacharias Biophys. J .104 1089 (2013)

    Article  Google Scholar 

  25. T Dršata, M Kara, M Zacharias, and F Lankaš J. Phys. Chem. B. 117 11617 (2013)

    Article  Google Scholar 

  26. X Cheng, C Kelso, V Hornak, C de los Santos, A P Grollman, and C Simmerling J. American Chem. Soc. 127 13906 (2005)

  27. T J Macke, and D A Case ACS Symposium Series; American Chem. Soci. 682 379 (1997)

  28. D Case, I Ben-Shalom, S Brozell, D. Cerutti, T Cheatham III, V Cruzeiro, T Darden, R Duke, D Ghoreishi, M Gilson et al. Amber 2018: San francisco (2018)

  29. D A Case et al. Amber 2014: San francisco (2014)

  30. P Mark, and L Nilsson J. Phys. Chem. A. 105 9954 (2001)

    Article  Google Scholar 

  31. W L Jorgensen, J Chandrasekhar, J D Madura, R W Impey, and M L Klein J. Chem. Phys. 79 926 (1983)

    Article  ADS  Google Scholar 

  32. I S Joung, and T E Cheatham J. Phys. Chem. B. 112 9020 (2008)

    Article  Google Scholar 

  33. R L Davidchack, R Handel, and M V Tretyakov J. Chem. Phys. 130 234101 (2009)

    Article  ADS  Google Scholar 

  34. W F V. Gunsteren, and H J C. Berendsen Mol. Simul. 1 173 (1988)

    Article  Google Scholar 

  35. H J Berendsen, J Postma, A D W F van Gunsteren, and J Haak J. Chem. Phys. 81 3684 (1984)

    Article  ADS  Google Scholar 

  36. P H Hunenberger Adv. Polym. Sci. 173 105 (2005)

    Article  Google Scholar 

  37. J P Ryckaert, G Ciccotti, and H J C Berendsen J. Comput. Phys. 23 327 (1977)

    Article  ADS  Google Scholar 

  38. T Darden, D York, and L Pederse J. Chem. Phys. 98 10089 (1993)

    Article  ADS  Google Scholar 

  39. S Naskar, and P K Maiti J. Mater. Chem. B 9 5102 (2021)

    Article  Google Scholar 

  40. A Garai, D Ghoshdastidar, S Senapati, and P K Maiti J. Chem. Phys. 149 045104 (2018)

    Article  ADS  Google Scholar 

  41. A Garai, S Saurabh, Y Lansac, and P K Maiti J. Phys. Chem. B 119 11146 (2015)

    Article  Google Scholar 

  42. S Naskar, S Saurabh, Y H Jang, Y Lansac, and P K Maiti Soft Matter. 16 634 (2020)

    Article  ADS  Google Scholar 

  43. P K. Maiti, T A. Pascal, N Vaidehi, J Heo, and W A Goddard, Biophys. J. 90 1463 (2006)

    Article  ADS  Google Scholar 

  44. P K Maiti, T A Pascal, N Vaidehi, and I Goddard, A William Nucleic Acids Res. 32 6047 (2004)

    Article  Google Scholar 

  45. S Mogurampelly, B Nandy, R R Netz, and P K Maiti, European Phys. J. E 36 68 (2013)

    Article  Google Scholar 

  46. A Aggarwal, S Naskar, A K Sahoo, S Mogurampelly, A Garai, and P K Maiti Curr. Opin. Struct. Biol. 64 42 (2020)

    Article  Google Scholar 

  47. S Naskar, M Gosika, H Joshi, and P K Maiti J. Phys. Chem. C 123 9461 (2019)

    Article  Google Scholar 

  48. A K Mazur Phys. Rev. Lett. 98 218102 (2007)

    Article  ADS  Google Scholar 

  49. H Joshi, A Kaushik, N C Seeman, and P K Maiti ACS Nano. 10 7780 (2016)

    Article  Google Scholar 

  50. S Naskar, H Joshi, B Chakraborty, N C Seeman, and P K Maiti Nanoscale 11 14863 (2019)

    Article  Google Scholar 

  51. E Skoruppa, M Laleman, S K Nomidis, and E Carlon J. Chem. Phys. 146 214902 (2017)

    Article  ADS  Google Scholar 

  52. L. K, D. T, L. F, L. J, and Z. M, Nucleic Acids Res. 43 10143 (2015)

  53. J H Liu, K Xi, X Zhang, L Bao, X Zhang, and Z J Tan Biophys. J. 117(1) 74 (2019)

    Article  ADS  Google Scholar 

  54. L Bao, X Zhang, Y Z Shi, Y Y Wu, and Z J Tan Biophys. J. 112 1094 (2017)

    Article  ADS  Google Scholar 

  55. Z Bryant, M D Stone, J Gore, S B Smith, N R Cozzarelli, and C Bustamante Nature. 424 338 (2003)

    Article  ADS  Google Scholar 

  56. S K Nomidis, F Kriegel, W Vanderlinden, J Lipfert, and E Carlon Phys. Rev. Lett. 118 217801 (2017)

    Article  ADS  Google Scholar 

  57. F Kriegel, N Ermann, R Forbes, D Dulin, N H Dekker, and J Lipfert Nucleic Acids Res. 45 5920 (2017)

    Article  Google Scholar 

  58. A Marin-Gonzalez, J Vilhena, F Moreno-Herrero, and R Perez Phys. Rev. Lett. 122 048102 (2019)

    Article  ADS  Google Scholar 

  59. X J Lu and W K Olson Nucleic Acids Res. 31 5108 (2003)

    Article  Google Scholar 

  60. W Humphrey, A Dalke, and K Schulten J. Mol. Graph. 14 33 (1996)

    Article  Google Scholar 

  61. D R Roe and T E Cheatham J. Chem. Theory Comput. 9 3084 (2013)

    Article  Google Scholar 

  62. J Abels, F Moreno-Herrero, T van der Heijden, C Dekker, and N Dekker, Biophys. J. 88 2737 (2005)

    Article  Google Scholar 

  63. P J Hagerman Annu. Rev. Biophys. Biomol. Struct. 26 139 (1997)

    Article  Google Scholar 

  64. K M Kosikov, A A Gorin, V B Zhurkin, and W K Olson J. Mol. Biol. 289 1301 (1999)

    Article  Google Scholar 

  65. R S Mathew-Fenn, R Das, and P A B Harbury, Science 322 446 (2008)

    Article  ADS  Google Scholar 

  66. E Herrero-Galán, M E Fuentes-Perez, C Carrasco, J M Valpuesta, J L Carrascosa, F Moreno-Herrero, and J R Arias-Gonzalez J. Am. Chem. Soc. 135 122 (2013)

    Article  Google Scholar 

  67. J Lipfert, G M. Skinner, J M. Keegstra, T Hensgens, T Jager, D Dulin, M Köber, Z Yu, S P Donkers, F C. Chou, R Das, and N H. Dekker Proc. Natl. Acad. Sci. 111 15408 (2014)

    Article  ADS  Google Scholar 

  68. P S Ho and M Carter In DNA Replication, edited by H. Seligmann (IntechOpen, Rijeka, 2011) Chap. 1

  69. P K Pingali, S Halder, D Mukherjee, S Basu, R Banerjee, D Choudhury, and D Bhattacharyya J. Comput. Aided Mol. Des. 28 851 (2014)

    Article  ADS  Google Scholar 

  70. P S Pallan, P Lubini, M Bolli, and M Egli Nucleic Acids Res. 35 6611 (2007)

    Article  Google Scholar 

  71. A Ghosh and M Bansal Acta Crystallogr. Sect. D 59 620 (2003)

    Article  Google Scholar 

  72. M Trieb, C Rauch, B Wellenzohn, F Wibowo, T Loerting, and K R Liedl, J. Phys. Chem. B 108 2470 (2004)

    Article  Google Scholar 

  73. H Ishida J. Biomol. Struct. Dyn. 19 839 (2002)

    Article  Google Scholar 

  74. L J Maher Structure 14 1479 (2006)

    Article  Google Scholar 

  75. R Padinhateeri and G Menon Biophys. J. 104 463 (2013)

    Article  ADS  Google Scholar 

  76. B Heddi, C Oguey, C Lavelle, N Foloppe, and B Hartmann, Nucleic Acids Res. 38 1034 (2009)

    Article  Google Scholar 

  77. S Mukherjee, S Kailasam, M Bansal, and D Bhattacharyya Biopolymers. 103 134 (2015)

    Article  Google Scholar 

  78. R Lavery et al. Nucleic Acids Res. 38 299 (2009)

  79. P Várnai, D Djuranovic, R Lavery, and B Hartmann Nucleic Acids Res. 30 5398 (2002)

    Article  Google Scholar 

  80. G F Deleavey and M J Damha Chem. and biol 19 937 (2012)

    Article  Google Scholar 

  81. N Foloppe and A D MacKerell J. Phys. Chem. B 103 10955 (1999)

    Article  Google Scholar 

  82. A Madhumalar and M Bansal J. Biomol. Struct. Dyn. 23 13 (2005)

    Article  Google Scholar 

  83. A Ben Imeddourene, A Elbahnsi, M Guéroult, C Oguey, N Foloppe, and B Hartmann PLoS Comput. Biol.11 1 (2015)

    Article  Google Scholar 

  84. D Svozil, J Kalina, M Omelka, and B Schneider Nucleic Acids Res. 36 3690 (2008)

    Article  Google Scholar 

  85. M Zgarbová, P Jureèka, F Lankaš, T E Cheatham, J Šponer, and M Otyepka J. Chem. Inf. Model. 57 275 (2017)

    Article  Google Scholar 

  86. B Hartmann, D Piazzola, and R Lavery Nucleic Acids Res. 21 561 (1993)

    Article  Google Scholar 

  87. B Heddi, N Foloppe, N Bouchemal, E Hantz, and B Hartmann J. Am. Chem. Soc. 128 9170 (2006)

    Article  Google Scholar 

  88. T Dršata, A Pérez, M Orozco, A V Morozov, J Sponer, and F Lankaš J Chem Theory Comput. 9 707 (2013)

    Article  Google Scholar 

  89. J J Hoppins, et al. PLOS ONE 11 1 (2016)

    Article  Google Scholar 

  90. E Arunan, et al. Pure Appl. Chem. 83 1637 (2011)

    Article  Google Scholar 

  91. Y H Jang, W A Goddard, K T Noyes, L C Sowers, S Hwang, and D S Chung Chem. Res. Toxicol. 15 1023 (2002)

    Article  Google Scholar 

  92. C M Crenshaw, J E Wade, H Arthanari, D Frueh, B F Lane, and M E Núñez Biochemistry 50 8463 (2011)

    Article  Google Scholar 

  93. A Jain, R Krishna Deepak, and R Sankararamakrishnan J. Struct. Biol. 187 49 (2014)

Download references

Acknowledgements

We thank TUE-CMS, IISc, Bangalore, funded by DST, for providing the CPU hours and DAE, India, for financial support. SN acknowledges IISc for the institute RA fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabal K. Maiti.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 750 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, K.B., Naskar, S. & Maiti, P.K. Probing the microscopic structure and flexibility of oxidized DNA by molecular simulations. Indian J Phys 96, 2597–2611 (2022). https://doi.org/10.1007/s12648-022-02299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02299-y

Keywords

Navigation