Skip to main content
Log in

Effect of variable viscosity and thermal conductivity on water-carrying iron (iii) oxide ferrofluid flow between two rotating disks

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The paper represents the potential significance of magnetic field-dependent viscosity, temperature-dependent viscosity, and variable conductivity on water-carrying iron (iii) oxide ferrofluid flow between two parallel stretchable rotating disks under the influence of a stationary magnetic field. This problem develops the understanding of the swirling flow of ferrofluid in the presence of magnetization force. The influence of variable viscosity and variable conductivity in the swirling flow of ferrofluid is useful in sealing the rotating shaft and heat transfer enhancement applications. We use similarity transformation to reduce the governing equations into non-dimensional nonlinear differential equations. The transformed non-dimensional boundary layer equations are solved numerically using finite element procedure in COMSOL Multiphysics. Under the influence of the magnetic field, the magnetic torque acting in the flow and enhancement in the volume concentration of iron (iii) oxide nanoparticles both enhance the viscosity of ferrofluid. Increasing temperature-dependent viscosity parameters reduce the viscosity of ferrofluid. However, variable conductivity parameter increases the temperature in the flow. The magnetic torque reduces the radial and axial velocity distributions and magnetization force enhances the velocities. Friction on the disk and local heat transfer mainly depends on the rotation speed and stretching of the disks, and magnetization force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(b\) :

Temperature-dependent viscosity parameter

\(c_{s}\) :

Dimensionless stress on the surface of the lower disk

\(c_{w}\) :

Dimensionless stress on the wall of the lower disk

\(d\) :

Vertical distance between disks (m)

\(d_{m}\) :

Diameter of magnetic core

(m)

\(Ec\) :

Eckert number

\(s\) :

Thickness of surfactant layer (m)

\(\left( {c_{p} } \right)_{nf}\) :

Specific heat of ferrofluid of at constant pressure \(\left( {{\text{J kg}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(\left( {c_{p} } \right)_{f}\) :

Specific heat of carrier liquid at constant pressure \(\left( {{\text{J kg}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(\left( {c_{p} } \right)_{s}\) :

Specific heat of nanoparticles at constant pressure \(\left( {{\text{J kg}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(f\) :

Dimensionless axial velocity

\(f^{\prime}\) :

Dimensionless radial velocity

\(Ec\) :

Eckert number

\(g\) :

Dimensionless tangential velocity

\(H\) :

Magnetic field intensity \(\left( {{\text{A }}{\text{m}}^{ - 1} } \right)\)

\(k_{nf}\) :

Thermal conductivity of ferrofluid

\(\left( {{\text{Wm}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(k_{f}\) :

Thermal conductivity of carrier liquid ferrofluid \(\left( {{\text{Wm}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(k_{s}\) :

Thermal conductivity of nanoparticles \(\left( {{\text{Wm}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(k\left( T \right)\) :

Temperature-dependent thermal conductivity of nanoparticles \(\left( {{\text{Wm}}^{ - 1} {\text{K}}^{ - 1} } \right)\)

\(K_{a}\) :

Pyromagnetic coefficient

\(M\) :

Magnetization \(\left( {{\text{A }}{\text{m}}^{ - 1} } \right)\)

\(Nu\) :

Local Nusselt number

\(P\) :

Dimensionless pressure

\(p\) :

Ferrofluid pressure \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 2} } \right)\)

\(q_{w}\) :

Wall heat flux \(\left( {{\text{Wm}}^{ - 1} {\text{L}}^{ - 1} } \right)\)

\({\text{Pr}}\) :

Prandtl number

\(r\) :

Radial direction (m)

\(s_{1}\) :

Stretching rate of lower disk \(\left( {{\text{rad s}}^{ - 1} } \right)\)

\(s_{2}\) :

Stretching rate of upper disk \(\left( {{\text{rad s}}^{ - 1} } \right)\)

\(S_{1}\) :

Dimensionless stretching parameter for lower disk

\(S_{2}\) :

Dimensionless stretching parameter for upper disk

\(T\) :

Temperature \(\left( K \right)\)

\(T_{a}\) :

Temperature of the lower disk \(\left( K \right)\)

\(T_{b}\) :

Temperature of the upper disk \(\left( K \right)\)

\({\text{u}}\) :

Radial velocity (m/s)

\(v\) :

Tangential velocity (m/s)

\(w\) :

Axial velocity \(\left( {m/s} \right)\)

\(z\) :

Axial direction (m)

\(Re\) :

Reynolds number

\(\xi\) :

Dimensionless magnetization

\(\xi_{0}\) :

Strength of the applied magnetic field \(\left( {{\text{A }}m^{ - 1} } \right)\)

\(\rho_{nf}\) :

Density of ferrofluid

\(\left( {{\text{kg m}}^{ - 3} } \right)\)

\(\rho_{f}\) :

Density of carrier liquid

\(\left( {{\text{kg m}}^{ - 3} } \right)\)

\(\rho_{s}\) :

Density of nanoparticles

\(\left( {{\text{kg m}}^{ - 3} } \right)\)

\(\mu_{0}\) :

Magnetic permeability of free space \(\left( {{\text{H m}}^{ - 1} } \right)\)

\(\mu_{nf}\) :

Dynamic viscosity of ferrofluid \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\mu_{nf} \left( {H = 0} \right)\) :

Dynamic viscosity of ferrofluid in the absence of magnetic field \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\mu_{nf} \left( {H \ne 0} \right)\) :

Dynamic viscosity of ferrofluid in the presence of magnetic field \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\mu_{nf} \left( T \right)\) :

Temperature-dependent dynamic viscosity \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\mu_{f}\) :

Dynamic viscosity of carrier liquid \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 1} } \right)\)

\(\omega\) :

Rotation parameter

\(\omega_{1}\) :

Angular velocity of the lower disk \(\left( {{\text{rad s}}^{ - 1} } \right)\)

\(\omega_{2}\) :

Angular velocity of the upper disk \(\left( {{\text{rad s}}^{ - 1} } \right)\)

\(\varphi\) :

Tangential direction \(\left( {rad} \right)\)

\(\varphi_{1}\) :

Volume concentration of nanoparticles

\(\varphi_{c}\) :

Critical volume fraction

\(\tilde{\varphi }\) :

Volume fraction of magnetic materials

\(\alpha_{nf}\) :

Thermal diffusivity \(\left( {{\text{m}}^{2} {\text{s}}^{ - 1} } \right)\)

\(\alpha\) :

Coefficient of thermal expansion

\(\epsilon\) :

Variable thermal conductivity parameter

\(\left( {\beta , \beta_{1} , \beta_{2} } \right)\) :

Ferromagnetic interaction numbers

\(\theta\) :

Dimensionless temperature

\(\lambda\) :

Dimensionless pressure gradient

\(\eta\) :

Dimensionless vertical distance

\(\tau_{s}\) :

Stress on the surface \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 2} } \right)\)

\(\tau_{w}\) :

Stress on the wall \(\left( {{\text{kg m}}^{ - 1} {\text{s}}^{ - 2} } \right)\)

References

  1. R E Rosensweig Ferrohydrodynamics (1997)

  2. S Odenbach and S Thurm Magnetoviscous Effects in Ferrofluids p 185 (2002)

  3. E Blums, A O (Andrei O T'S' ebers and M M (Mikhail M Maĭorov Magnetic fluids (Walter de Gruyter) (1997)

  4. S Genc and B Derin Curr. Opin. Chem. Eng. 3 118 (2014)

    Article  Google Scholar 

  5. J L Neuringer and R E Rosensweig Phys. Fluids 7 1927 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  6. C Rinaldi, A Chaves, S Elborai and X He Opin. Colloid Interface Sci. 10 141 (2005)

    Article  Google Scholar 

  7. R E Rosensweig and R Kaiser J. Colloid Interface Sci. 29 680 (1969)

    Article  ADS  Google Scholar 

  8. S Odenbach, L M Pop and A Y Zubarev GAMM-Mitteilungen 30 195 (2007)

    Article  MathSciNet  Google Scholar 

  9. A Y Zubarev and L Y Iskakova J. Phys. Condens. Matter 18 S2771 (2006)

    Article  ADS  Google Scholar 

  10. S Odenbach Ferrofluids - Magnetically controlled suspensions (Elsevier) p 171 (2003)

  11. M Sheikholeslami and S A Shehzad Int. J. Heat Mass Transf. 118 182 (2018)

    Article  Google Scholar 

  12. J Nowak and D Wolf J. Magn. Magn. Mater. 354 98 (2014)

    Article  ADS  Google Scholar 

  13. D Susan-Resiga and P Barvinschi J. Rheol. (N. Y. N. Y.) 62 739 (2018)

    Article  ADS  Google Scholar 

  14. K Shahrivar, J R Morillas, Y Luengo, H Gavilan, P Morales, C Bierwisch and J de Vicente J. Rheol. (N. Y. N. Y.) 63 547 (2019)

    Article  ADS  Google Scholar 

  15. L M Pop, S Odenbach, A Wiedenmann, N Matoussevitch and H Bönnemann Microstructure and rheology of ferrofluids (North-Holland) p 303 (2005)

  16. H Hezaveh and A Fazlali J. Taiwan Inst. Chem. Eng. 43 159 (2012)

    Article  Google Scholar 

  17. C E Nanjundappa, B Savitha, B Arpitha Raju and I S Shivakumara Acta Mech. 225 835 (2014)

    Article  MathSciNet  Google Scholar 

  18. R K Vanishree and P G Siddheshwar Transp. Porous Media 81 73 (2010)

    Article  MathSciNet  Google Scholar 

  19. R Ellahi Appl. Math. Model. 37 1451 (2013)

    Article  MathSciNet  Google Scholar 

  20. J Chen and S D King Phys. Earth Planet. Inter. 106 75 (1998)

    Article  ADS  Google Scholar 

  21. K E Chin, R Nazar and N M Arifin Commun. Heat Mass Transf. 34 464 (2007)

    Article  Google Scholar 

  22. K Hooman and H Gurgenci Appl. Math. Mech. English Ed. 28 69 (2007)

    Article  Google Scholar 

  23. R Miller, P T Griffiths, Z Hussain and S J Garrett Phys. Fluids 32 024105 (2020)

  24. E Závadský and J Karniš Acta 21 470 (1982)

    Google Scholar 

  25. J shyongWang and R S Porter Acta 34 496 (1995)

    Google Scholar 

  26. K A Maleque Chem. Eng. Commun. 197 506 (2010)

    Article  Google Scholar 

  27. A A Khidir Arab. J. Math. 2 263 (2013)

    Article  MathSciNet  Google Scholar 

  28. M Y Malik, H Jamil, T Salahuddin, S Bilal, K U Rehman and Z Mustafa Results Phys. 6 1126 (2016)

    Article  ADS  Google Scholar 

  29. J Ahmed, A Shahzad, A Farooq, M Kamran and S U D Khan Nanosci. 10 5305 (2020)

    Google Scholar 

  30. P Ram and A Bhandari J. Magn. Magn. Mater. 322 3476 (2010)

    Article  ADS  Google Scholar 

  31. P Ram and A Bhandari Int. J. Appl. Electromagn. Mech. 41 467 (2013)

    Article  Google Scholar 

  32. A Bhandari and V Kumar Fluid Dyn. Mater. Process. 10 359 (2014)

    Google Scholar 

  33. M Ijaz Khan, S A Khan, T Hayat, M Imran Khan and A Alsaedi Methods Programs Biomed. 184 105111 (2020)

    Article  Google Scholar 

  34. M R Zangooee, K Hosseinzadeh and D D Ganji Case Stud Therm. Eng. 14 100460 (2019)

    Article  Google Scholar 

  35. T Tayebi Int. J. Numer. Methods Heat Fluid Flow 30 1115 (2019)

    Article  Google Scholar 

  36. G Rasool, T Zhang, A J Chamkha, A Shafiq, I Tlili and G Shahzadi Entropy 22 18 (2020)

    Article  ADS  Google Scholar 

  37. A Hafeez, M Khan and J Ahmed J. Therm. Anal. Calorim. 144 793 (2020)

    Article  Google Scholar 

  38. A Hafeez, M Khan and J Ahmed Comput. Methods Programs Biomed. 191 105342 (2020)

    Article  Google Scholar 

  39. A Hafeez, M Khan and A Ahmed Math. Mech. 41 1083 (2020)

    Article  Google Scholar 

  40. M Khan, M Sarfraz, J Ahmed and L Ahmad Math. Mech. 41 725 (2020)

    Article  Google Scholar 

  41. J Ahmed, M Khan and L Ahmad Phys. Scr. 94 095003 (2019)

  42. J Ahmed and M Khan Phys. A Mater. Sci. Process. 125 1 (2019)

    Article  Google Scholar 

  43. M Khan, J Ahmed and L Ahmad Appl. Math. Mech. 39 1295 (2018)

    Article  Google Scholar 

  44. M Turkyilmazoglua Phys. Fluids 28 043601 (2016)

    Article  ADS  Google Scholar 

  45. J Ahmed and M Khan J. Phys. 60 22 (2019)

    Google Scholar 

  46. T Hayat, S Qayyum, M Imtiaz, F A-J of M and undefined 2016 Elsevier n.d

  47. S Xinhui, Z Liancun and Z Xinxin Math. Model. 36 1806 (2012)

    Article  Google Scholar 

  48. S ArrheniusBiochem. J. 11 112 (1917)

    Article  Google Scholar 

  49. Z Iqbal, E Azhar and E N Maraj Phys. A Stat. Mech. Its Appl. 565 125570 (2021)

    Article  Google Scholar 

  50. J Wang, J Kang and Y Zhang Int. 75 61 (2014)

    Google Scholar 

  51. M I Shliomis and K I Morozov Phys. Fluids 6 2855 (1994)

    Article  ADS  Google Scholar 

  52. P G Siddheshwar and R K Vanishree Porous Media 92 277 (2012)

    Article  Google Scholar 

  53. R Cortell Can. J. Chem. Eng. 90 1347 (2012)

    Article  Google Scholar 

  54. J L Neuringer Int. J. Non. Linear. Mech. 1 123 (1966)

    Article  ADS  Google Scholar 

  55. A Bhandari Pramana 95 1 (2021)

  56. A Bhandari Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2021)

  57. M Ramzan, M Bilal, J D Chung, D C Lu and U Farooq Phys. Fluids 29 093102 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Bhandari.

Ethics declarations

Conflict of interest

The author reports no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A. Effect of variable viscosity and thermal conductivity on water-carrying iron (iii) oxide ferrofluid flow between two rotating disks. Indian J Phys 96, 3221–3238 (2022). https://doi.org/10.1007/s12648-022-02281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02281-8

Keywords

Navigation