Skip to main content
Log in

Multiplicity per rapidity in Carruthers and hadron resonance gas approaches

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The multiplicity per rapidity of the well-identified particles \(\pi ^{-}\), \(\pi ^{+}\), \(k^{-}\), \(k^{+}\), \(\bar{p}\), p, and \(p-\bar{p}\) measured in different high-energy experiments, at energies ranging from 6.3 to 5500 GeV, is successfully compared with the Cosmic Ray Monte Carlo event generator. For these rapidity distributions, we introduce a theoretical approach based on fluctuations and correlations (Carruthers approach) and another one based on statistical thermal assumptions (hadron resonance gas approach). Both approaches are fitted to both sets of results deduced from experiments and simulations. We found that the Carruthers approach reproduces well the full range of multiplicity per rapidity for all produced particles, at the various energies, while the HRG approach fairly describes the results within a narrower rapidity range. While the Carruthers approach seems to match well with the Gaussian normal distribution, ingredients such as flow and interactions should be first incorporated in the HRG approach. We conclude that fluctuations, correlations, interactions, and flow, especially in the final state, assure that the produced particles become isotropically distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. either compiled by the particle data group [56] or still theoretical predictions [57].

References

  1. A N Tawfik Int. J. Mod. Phys. A29 1430021 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. H Satz Rept. Prog. Phys. 63 1511 (2000)

    Article  ADS  Google Scholar 

  3. B Muller Rep. Prog. Phys. 58 611 (1995)

    Article  ADS  Google Scholar 

  4. E V Shuryak Phys. Rep. 61 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  5. J Cleymans, K Redlich, H Satz and E Suhonen Z. Phys. C33 151 (1986)

    Article  Google Scholar 

  6. J Cleymans and H Satz Z. Phys. C57 135 (1993)

    Article  ADS  Google Scholar 

  7. H Kouno and F Takagi Z. Phys. C42 209 (1989)

    Article  Google Scholar 

  8. A Andronic, P Braun-Munzinger, J Stachel and M Winn Phys. Lett. B718 80 (2012)

    Article  ADS  Google Scholar 

  9. S K Tiwari, P K Srivastava and C P Singh J. Phys. G40 045102 (2013)

    Article  ADS  Google Scholar 

  10. P K Srivastava and C P Singh Phys. Rev. D85 114016 (2012)

    Article  ADS  Google Scholar 

  11. R Hagedorn and J Rafelski Phys. Lett. 97B 136 (1980)

    Article  ADS  Google Scholar 

  12. L Marques, J Cleymans and A Deppman Phys. Rev. D91 054025 (2015)

    ADS  Google Scholar 

  13. S K Tiwari, P K Srivastava and C P Singh Phys. Rev. C85 014908 (2012)

    Article  ADS  Google Scholar 

  14. J D Bjorken Phys. Rev. D27 140 (1983)

    ADS  Google Scholar 

  15. E Schnedermann and U W Heinz Phys. Rev. Lett. 69 2908 (1992)

    Article  ADS  Google Scholar 

  16. E Schnedermann, J Sollfrank and U W Heinz Phys. Rev. C48 2462 (1993)

    Article  ADS  Google Scholar 

  17. P Braun-Munzinger, J Stachel, J P Wessels and N Xu Phys. Lett. B365 1 (1996)

    Article  ADS  Google Scholar 

  18. P Braun-Munzinger, J Stachel, J P Wessels and N Xu Phys. Lett. B344 43 (1995)

    Article  ADS  Google Scholar 

  19. S Q Feng and Y Zhong Phys. Rev. C83 034908 (2011)

    Article  ADS  Google Scholar 

  20. S Feng and X Yuan Sci. China G52 198 (2009)

    Google Scholar 

  21. S Uddin, J S Ahmad, W Bashir and R A Bhat J. Phys. G39 015012 (2012)

    Article  ADS  Google Scholar 

  22. T Hirano, K Morita, S Muroya and C Nonaka Phys. Rev. C65 061902 (2002)

    Article  ADS  Google Scholar 

  23. K Morita, S Muroya, C Nonaka and T Hirano Phys. Rev. C66 054904 (2002)

    Article  ADS  Google Scholar 

  24. J Manninen, E L Bratkovskaya, W Cassing and O Linnyk Eur. Phys. J. C71 1615 (2011)

    Article  ADS  Google Scholar 

  25. U Mayer and U W Heinz Phys. Rev. C56 439 (1997)

    Article  ADS  Google Scholar 

  26. W Broniowski and W Florkowski Phys. Rev. Lett. 87 272302 (2001)

    Article  ADS  Google Scholar 

  27. W Broniowski and W Florkowski Phys. Rev. C65 064905 (2002)

    Article  ADS  Google Scholar 

  28. P Bozek Phys. Rev. C77 034911 (2008)

    ADS  Google Scholar 

  29. A N Tawfik, M A Wahab, H Yassin and H M N El Din J. Exp. Theor. Phys. 130 506 (2020)

    Article  ADS  Google Scholar 

  30. H Yassin, E R A Elyazeed and A N Tawfik arXiv:2003.02675 [hep-ph]

  31. A N Tawfik, M A Wahab, H Yassin and H N El Din J. Exp. Theor. Phys. 157 604 (2020)

    Google Scholar 

  32. F Becattini and J Cleymans J. Phys. G34 S959 (2007)

    Article  ADS  Google Scholar 

  33. J Cleymans, J Strumpfer and L Turko Phys. Rev. C78 017901 (2008)

    Article  ADS  Google Scholar 

  34. J H Lee et al BRAHMS (Collaboration) J. Phys. G30 S85 (2004)

    Article  Google Scholar 

  35. S V Afanasiev et al (The NA49 Collaboration) Phys. Rev. C66 054902 (2002)

  36. I G Bearden et al (NA44 Collaboration) Phys. Rev. C66 044907 (2002)

  37. B Biedron and W Broniowski Phys. Rev. C75 054905 (2007)

    Article  ADS  Google Scholar 

  38. E L Bratkovskaya, A Palmese, W Cassing, E Seifert, T Steinert and P Moreau J. Phys. Conf. Ser. 878 012018 (2017)

    Article  Google Scholar 

  39. J Adams et al (STAR Collaboration) Phys. Rev. C70 041901 (2004)

  40. W P Zhou, S H Cai and Z W Long Chin. Phys. C33 10 (2009)

    Google Scholar 

  41. K Hebeler, S K Bogner, R J Furnstahl, A Nogga and A Schwenk . C83 031301 (2011)

    ADS  Google Scholar 

  42. I G Bearden et al (BRAHMS Collaboration) Phys. Rev. Lett. 94 162301 (2005)

  43. P Seyboth et al (NA49 Collaboration) Acta Phys. Polon. B36 565 (2005)

  44. C Adler et al (STAR Collaboration) Phys. Rev. Lett. 87 262302 (2001)

  45. K Adcox et al (PHENIX Collaboration) Phys. Rev. C69 024904 (2004)

  46. N N Kalmykov, S S Ostapchenko and A I Pavlov Nucl. Phys. Proc. Suppl. 52 17 (1997)

    Article  ADS  Google Scholar 

  47. N N Kalmykov and S S Ostapchenko Phys. Atom. Nucl. 56 346 (1993) [Yad. Fiz. 56 no 3 105 (1993)]

  48. S Ostapchenko Phys. Rev. D74 014026 (2006)

    ADS  Google Scholar 

  49. S Ostapchenko Nucl. Phys. Proc. Suppl. 151 143 (2006)

    Article  ADS  Google Scholar 

  50. S Ostapchenko AIP Conf. Proc. 928 118 (2007)

    Article  ADS  Google Scholar 

  51. J Engel, T K Gaisser, T Stanev and P Lipari Phys. Rev. D46 5013 (1992)

    Article  ADS  Google Scholar 

  52. R S Fletcher, T K Gaisser, P Lipari and T Stanev Phys. Rev. D50 5710 (1994)

    Article  ADS  Google Scholar 

  53. E J Ahn, R Engel, T K Gaisser, P Lipari and T Stanev Phys. Rev. D80 094003 (2009)

    Article  ADS  Google Scholar 

  54. K Werner, F M Liu and T Pierog Phys. Rev. C74 044902 (2006)

    Article  ADS  Google Scholar 

  55. T Pierog and K Werner Nucl. Phys. Proc. Suppl. 196 102 (2009)

    Article  ADS  Google Scholar 

  56. M Tanabashi et al (Particle Data Group) Phys. Rev. D98 030001 (2018)

  57. S Capstick and N Isgur Phys. Rev. D34 2809 (1986) [AIP Conf. Proc. 132 267(1985)]

  58. A N Tawfik, H Yassin and E R A Elyazeed (2019) arXiv:2003.02675 [hep-ph]

  59. A N Tawfik Adv. High Energy Phys. 2019 4604608 (2019)

    Article  Google Scholar 

  60. A N Tawfik and E Abbas Phys. Part. Nucl. Lett. 12 521 (2015)

    Article  Google Scholar 

  61. P. Carruthers Proceedings of the XIII Warsaw symposium on Elementary Particle Physics p 317 (1990)

  62. P Carruthers, H C Eggers, Q Gao and I Sarcevic Int. J. Mod. Phys. A6 3031 (1991)

    Article  ADS  Google Scholar 

  63. J Randrup Acta Phys. Hung. A22 69 (2005)

    Article  Google Scholar 

  64. T Pierog, I Karpenko, J M Katzy, E Yatsenko and K Werner Phys. Rev. C92 034906 (2015)

    Article  ADS  Google Scholar 

  65. A Bazavov et al Phys. Rev. Lett. 113 072001 (2014)

    Article  ADS  Google Scholar 

  66. P ManLo, M Marczenko, K Redlich and C Sasaki Eur. Phys. J. A52 235 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of AT was supported by the ExtreMe Matter Institute (EMMI) at the GSI Helmholtz Centre for Heavy Ion Research, Visiting Professor 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Nasser Tawfik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Mathematical details for Eq. (6)

Appendix: Mathematical details for Eq. (6)

The Grand canonical partition function reads

$$\begin{aligned} Z(T,V,\mu )=\text{ Tr }\left[ \exp \left( \frac{{\mu }N-H}{\mathtt {T}}\right) \right] , \end{aligned}$$
(27)

where H is Hamiltonian of the system, N is the total number of constituents. In the HRG model, Eq. (27) can be expressed as a sum over all hadron resonances as

$$\begin{aligned} \ln Z(T,V,\mu )=\sum _i{{\ln Z}_i(T,V,\mu )} =\frac{V g_i}{(2{\pi })^3}\int ^{\infty }_0{\pm d^{3}p {\ln } {\left[ 1\pm \exp \left( \frac{{\varepsilon }_i(p)-\mu _{i}}{\mathtt {T}} \right) \right] }}, \end{aligned}$$
(28)

where ± stands for bosons and fermions, respectively, and \(\varepsilon _{i}=\left( p^{2}+m_{i}^{2}\right) ^{1/2}\) is the dispersion relation of the ith particle. The total number of particles can be obtained from the partition function as follows.

$$\begin{aligned} N_{i}=T \frac{\partial Z_{i}(T, V)}{\partial \mu _{i}}=\frac{V g_i}{(2{\pi })^3}\int ^{\infty }_0{d^{3}p \left[ \exp \left( \frac{\varepsilon _{i} (p)-\mu _{i}}{\mathtt {T}}\right) \pm 1\right] ^{-1}}, \end{aligned}$$
(29)

The invariant momentum spectrum of partially radiated by a thermal source is given by

$$\begin{aligned} \frac{\mathrm{d}^{3}N_{i}}{\mathrm{d}ym_{T}\mathrm{d}m_{T}\mathrm{d}\phi }=\varepsilon _{i} \frac{V g_i}{(2{\pi })^3}\left[ \exp \left( \frac{\varepsilon _{i} (p)-\mu _{i}}{\mathtt {T}}\right) \pm 1\right] ^{-1}, \end{aligned}$$
(30)

where \(m_{T}\) is the transverse mass. This is given by

$$\begin{aligned} m_{T}=\sqrt{m^{2}+p_{T}^{2}}, \end{aligned}$$
(31)

where \(p_{T}\) is the transverse momentum. The energy of the ith particle \(\varepsilon _{i}\) can be expressed in terms of the rapidity \(\left( y\right) \) and \(m_{T}\)

$$\begin{aligned} \varepsilon =m_{T} \cosh \left( y\right) . \end{aligned}$$
(32)

Then, the rapidity density can be obtained through integral over the full transverse mass \(m_{T}\),

$$\begin{aligned} \frac{\mathrm{d}N}{\mathrm{d}y}=\frac{V g_i}{\left( 2{\pi }\right) ^2}\int ^{\infty }_m {dm_{\mathtt {T}} \cosh \left( y\right) m_{\mathtt {T}}^{2} \left[ \exp \left( \frac{m_{\mathtt {T}} \cosh \left( y\right) -\mu _{i}}{T}\right) \pm 1\right] ^{-1}}. \end{aligned}$$
(33)

To make the lower integration limit starts from zero, we define a new variable t

$$\begin{aligned} t = \frac{m_T - m}{T} \cosh \left( y\right) , \end{aligned}$$
(34)

Equation (34) can be arranged as

$$\begin{aligned} m_T = \frac{t T}{\cosh \left( y\right) } + m, \end{aligned}$$
(35)

By differentiating Eq. (35), we get

$$\begin{aligned} dm_T = \frac{T dt}{\cosh \left( y\right) }, \end{aligned}$$
(36)

By substituting Eqs. (34), (35) and (36) into Eq. (33), we get

$$\begin{aligned} \frac{\mathrm{d}N}{\mathrm{d}y}=\frac{V g_i}{\left( 2{\pi }\right) ^2}\int ^{\infty }_0\frac{\cosh \left( y\right) (\frac{t T}{\cosh \left( y\right) } + m)^2 T \mathrm{d}t}{\cosh \left( y\right) \left[ \exp (t + \frac{m}{T}\cosh \left( y\right) - \frac{\mu _i}{T} ) \pm 1 \right] }, \end{aligned}$$
(37)

Also, Eq. (37) can be rewritten as

$$\begin{aligned} \frac{\mathrm{d}N}{\mathrm{d}y}=\frac{V g_i T^3}{\left( 2{\pi }\right) ^2 \cosh ^2\left( y\right) }\int ^{\infty }_0\frac{ (t + \frac{m \cosh \left( y\right) }{T} )^2 \mathrm{d}t}{ \left[ \exp (t + \frac{m}{T}\cosh \left( y\right) - \frac{\mu _i}{T} ) \pm 1 \right] }. \end{aligned}$$
(38)

Let us define

$$\begin{aligned} c = \frac{m \cosh \left( y\right) - \mu _i}{T}. \end{aligned}$$
(39)

Then, Eq. (38) can be rewritten as

$$\begin{aligned} \frac{\mathrm{d}N}{\mathrm{d}y}=\frac{V g_i T^3}{\left( 2{\pi }\right) ^2 \cosh ^2\left( y\right) }\int ^{\infty }_0\frac{ (t^2 + \frac{2 m \cosh \left( y\right) t}{T} + \frac{m^2 \cosh ^2\left( y\right) }{T^2} ) dt}{ \exp (t + c ) \pm 1}, \end{aligned}$$
(40)

Also, Eq. (40) can be rewritten as

$$\begin{aligned}&\frac{\mathrm{d}N}{\mathrm{d}y}=\frac{V g_i T^3}{\left( 2{\pi }\right) ^2 \cosh ^2\left( y\right) }\nonumber \\&\quad \left\{ \int ^{\infty }_0\frac{t^2 \mathrm{d}t}{\exp (t + c) \pm 1} +\frac{2 m \cosh \left( y\right) }{T}\int ^{\infty }_0\frac{t \mathrm{d}t}{\exp (t + c) \pm 1} +\frac{m^2 \cosh \left( y\right) }{T^2}\int ^{\infty }_0\frac{\mathrm{d}t}{\exp (t + c) \pm 1}\right\} . \end{aligned}$$
(41)

The polylogarithmic function is defined as

$$\begin{aligned} \mp L_is(\mp z) = \frac{1}{\Gamma (s)}\int ^{\infty }_0\frac{t^{s-1} dt}{\frac{\exp (t)}{z} \pm 1}, \end{aligned}$$
(42)

where

$$\begin{aligned} L_{i1}(z)= & {} \log (1 + z) \nonumber \\ \Gamma (s)= & {} (s-1)!, \nonumber \\ L_{in}(z)= & {} \sum _k=1^\infty \frac{z^k}{k^n}. \end{aligned}$$
(43)

By substituting from Eqs. (39), (42) and (43) into Eq. (41), we get

$$\begin{aligned} \frac{\mathrm{d}N}{\mathrm{d}y}= & {} \frac{g_i V}{2\pi ^2}\left\{ \frac{2T^3 L_{i3}}{\cosh ^2\left( y\right) } \left( \mp \exp (-c)\right) \mp \frac{2m T^2}{\cosh \left( y\right) }L_{i2}\left( \mp \exp (-c)\right) \right. \nonumber \\&\pm&\left. m^2 T \log (1 \pm (\mp \exp (-c)))\right\} . \end{aligned}$$
(44)

By substituting Eq. (39) into Eq. (44), the multiplicity per rapidity reads

$$\begin{aligned} \frac{\mathrm{d}N}{\mathrm{d}y}= & {} \frac{g_i V}{2\pi ^2}\left\{ \frac{2T^3 L_{i3}}{\cosh ^2\left( y\right) } \left[ \mp \exp \left( -\frac{m \cosh \left( y \right) -\mu _i}{T}\right) \right] \right. \nonumber \\&\mp \left. \frac{2m T^2}{\cosh \left( y\right) }L_{i2}\left[ \mp \exp \left( -\frac{m \cosh \left( y\right) -\mu _i}{T}\right) \right] \right. \nonumber \\&\pm \left. m^2 T \log \left( 1 \pm \left[ \mp \exp \left( -\frac{m\cosh \left( y\right) -\mu _i}{T}\right) \right] \right) \right\} . \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A.N., Hanafy, M. & Scheinast, W. Multiplicity per rapidity in Carruthers and hadron resonance gas approaches. Indian J Phys 96, 2993–3005 (2022). https://doi.org/10.1007/s12648-021-02228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02228-5

Keywords

Navigation