Skip to main content
Log in

Rashba effect in cylindrical quantum well wire with finite confining potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of the Rashba spin-orbit interaction has been investigated in an infinite cylindrical quantum well wire (QWW) with finite confining potential. The effect has been considered in the absence and presence of an axial magnetic field. The solution of the radial Schrödinger equation has been obtained in the wire and in the barrier, in the absence of the Rashba spin-orbit interactions. The general solution in the presence of these interactions has then been expanded in terms of the obtained two solutions and in terms of the step function. The study should, however, be performed in two dimensions. For this reason, the wave vector along the axis of the wire has been chosen to be zero. The orthogonality of the elements of the resulting basis has been proved. The dependence of the Rashba coupling coefficient on the electron effective mass has also been taken into consideration. The results have been applied to the case of \(GaAs - Ga_{1 - x} Al_{x} As\) cylindrical quantum wire.

Graphical Abstract

The energy levels (Eo01, Eo02) and (E01, E02) in the absence and presence of the Rashba effect against the radius (R) of the QWW. The magnetic field B = 10 T, the confining potential Vo = 25 R* and two different values for the Rashba coupling coefficient have been used in the wire and barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R Srouji and M R Sakr Phys. E 68 210 (2015)

    Article  Google Scholar 

  2. P M Krstajic, M Pagano and P Vasilopoulos Phys. E 43 893 (2011)

    Article  Google Scholar 

  3. T Ando, M Nakayama and M Hosoda Phys. Rev. B 69 165316 (2004)

    Article  ADS  Google Scholar 

  4. S Chakrabarti and P Bhattacharya J. Phys. D: Appl. Phys. 36 1794 (2003)

    Article  ADS  Google Scholar 

  5. E I Rashba Sov. Phys. Solid State 2 1109 (1960)

    Google Scholar 

  6. E I Rashba Phys. Rev. B 62 R16267 (2000)

    Article  ADS  Google Scholar 

  7. X F Wang and P Vasilopoulos Phys. Rev. B 68 035305 (2003)

    Article  ADS  Google Scholar 

  8. X F Wang Phys. Rev. B 69 035302 (2004)

    Article  ADS  Google Scholar 

  9. J E Birkholz and V Meden J. Phys.: Condens. Matter 20 085226 (2008)

    ADS  Google Scholar 

  10. P Kleinert Phys. E 41 660 (2009)

    Article  MathSciNet  Google Scholar 

  11. A Voskoboynikov, C P Lee and O Tretyak Phys. E 10 107 (2001)

    Article  Google Scholar 

  12. M Florescu, S Dickman, M Ciorga, A Sachrajda and P Hawrylak Phys. E 22 414 (2014)

    Article  Google Scholar 

  13. Y C Xiao and W J Deng Superlatt. Microstruct. 48 181 (2010)

    Article  ADS  Google Scholar 

  14. B Gisi, S Sakiroglu, K Kasapoglu, H Sari and I Sokmen Superlatt. Microstruct. 86 166 (2015)

    Article  ADS  Google Scholar 

  15. S Ishida, T Manago, N Nishizako, M Geka and I Shibasaki Phys. E 42 984 (2010)

    Article  Google Scholar 

  16. G Gumbs and D Huang Phys. Lett. A 373 2506 (2009)

    Article  ADS  Google Scholar 

  17. T F A Alves, A C A Ramos and G A Farias Phys. J. B 67 213 (2009)

    ADS  Google Scholar 

  18. W H Kuan, C S Tang and W. Xu, arXiv: 0403098v2 [cond–mat. mes – hall] (2004), see xxxlanl. gov

  19. D S Kumar, S Mukhopodhyay and A Chatterjee Phys. B 501 129 (2016)

    Article  ADS  Google Scholar 

  20. S Lahon and M Kumar J. Lumin 144 149 (2013)

    Article  Google Scholar 

  21. M Kumar, S Lahon, P K Jha, S Gumber and M Mohan Phys. B 438 29 (2014)

    Article  ADS  Google Scholar 

  22. M Kumar and S Lahon Microstruct. 57 11 (2013)

    Article  Google Scholar 

  23. E Papp and C Micu Superlatt. Microstruct. 48 9 (2010)

    Article  ADS  Google Scholar 

  24. B H Mehdiyev and A M Babayev Microstruct. 46 593 (2009)

    Article  Google Scholar 

  25. B Vaseghi Lett. A 375 2747 (2011)

    Article  ADS  Google Scholar 

  26. B Vaseghi Commun. 287 241 (2013)

    ADS  Google Scholar 

  27. H Hassanabadi, M Solaimani and H Rahimov Solid State Commun. 151 1962 (2011)

    Article  ADS  Google Scholar 

  28. M Kumar and S Lahon Status Solidi B 250 1585 (2013)

    Article  ADS  Google Scholar 

  29. M Kumar, S Gumber and S Lahon Phys. J. B 87 71 (2014)

    ADS  Google Scholar 

  30. P K Jha, M Kumar, S Lahon, S Gumber and M Mohan Superlatt. Microstruct. 65 71 (2014)

    Article  ADS  Google Scholar 

  31. M Nazari, M J Karimi and A Keshavarz Phys. B 428 30 (2013)

    Article  ADS  Google Scholar 

  32. S Sakiroglu, B Gisi, Y Karaaslan, E Kasapoglu, H Sari and I Sokmen Phys. E 81 59 (2016)

    Article  Google Scholar 

  33. A A Portacio, B A Rodriguez and P Villamil Phys. B 511 68 (2017)

    Article  ADS  Google Scholar 

  34. A Vanitha Lett. A 375 208 (2010)

    Article  ADS  Google Scholar 

  35. Y Safaei Microstruct. 64 140 (2013)

    Article  Google Scholar 

  36. P Saini J. Mag. Mag. Mat 485 407 (2019)

    Article  ADS  Google Scholar 

  37. J Lee and H N Spector J. Vac. Sci. Technol. B 2 16 (1984)

    Article  Google Scholar 

  38. J W Brown and H N Spector J. Appl. Phys. 59 1179 (1986)

    Article  ADS  Google Scholar 

  39. W Xie Phys. Lett. A 372 5498 (2008)

    Article  ADS  Google Scholar 

  40. J Yuan, W Xie and L He Phys. E 41 779 (2009)

    Article  Google Scholar 

  41. W Xie Superlatt. Microstruct. 48 239 (2010)

    Article  ADS  Google Scholar 

  42. G Liu, K Guo and C Wang Phys. B 407 2334 (2012)

    Article  ADS  Google Scholar 

  43. https://en.wikipedia.org/wiki/Rashba_effect

  44. N N Lebedev (1965) Special Functions and Their Applications (London: Prentice Hall Inc.)

  45. S V Branis Rev. B 47 1316 (1993)

    Article  Google Scholar 

  46. H C Casey J. Appl. Phys. 49 3684 (1978)

    Article  ADS  Google Scholar 

  47. S Adachi J. Appl. Phys. 58 R1 (1985)

    Article  ADS  Google Scholar 

  48. J C Egues Phys. Lett. 82 2658 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. I. Mikhail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Orthogonality and some important relations

Appendix 1 Orthogonality and some important relations

In this appendix, we give and prove some important relations which have been used throughout the text.

  1. (1)

    It can be shown by using the relations between the Bessel functions (Lebedev [44]) and the analogous relations between the modified Bessel functions that

    $$\mathop \int \limits_{0}^{R} J_{\nu } \left( {\alpha \rho } \right)J_{\nu } \left( {\beta \rho } \right) \rho d\rho = \frac{R}{{\left( {\alpha^{2} - \beta^{2} } \right)}}\left[ {\beta J_{\nu } \left( {\alpha R} \right)J_{\nu }^{^{\prime}} \left( {\beta R} \right) - \alpha J_{\nu } \left( {\beta R} \right)J_{\nu }^{^{\prime}} \left( {\alpha R} \right)} \right],$$
    (73)
    $$\mathop \int \limits_{0}^{R} J_{\nu }^{2} \left( {\alpha \rho } \right) \rho d\rho = \frac{{R^{2} }}{2}\left[ { - J_{\nu + 1} \left( {\alpha R} \right) J_{\nu - 1} \left( {\alpha R} \right) + J_{\nu }^{2} \left( {\alpha R} \right)} \right],$$
    (74)
    $$\mathop \int \limits_{R}^{\infty } K_{\nu } \left( {\alpha \rho } \right)K_{\nu } \left( {\beta \rho } \right)\rho d\rho = \frac{R}{{\left( {\alpha^{2} - \beta^{2} } \right)}}\left[ {\beta K_{\nu } \left( {\alpha R} \right)K_{\nu }^{^{\prime}} \left( {\beta R} \right) - \alpha K_{\nu } \left( {\beta R} \right)K_{\nu }^{^{\prime}} \left( {\alpha R} \right)} \right]$$
    (75)

    and

    $$\mathop \int \limits_{R}^{\infty } K_{\nu }^{2} \left( {\alpha \rho } \right) \rho d\rho = \frac{{R^{2} }}{2}\left[ {K_{\nu + 1} \left( {\alpha R} \right) K_{\nu - 1} \left( {\alpha R} \right) - K_{\nu }^{2} \left( {\alpha R} \right)} \right],$$
    (76)

    The dash in Eqs. (73), (75) refers to the differentiation of \(J_{\nu }\) and \(K_{\nu }\) with respect to their arguments.

  2. (2)

    The above relations can be used to prove the orthogonality of the elements of the basis \(\left\{ {{\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right)} \right\}\) in the absence of a magnetic field. For this purpose, we restrict \(\alpha , \beta\) in Eqs. (73), (74) to be two values of the parameter \(a_{nm}\) being defined by Eq. (6). Also, \(\alpha , \beta\) in Eqs. (75), (76) are taken to be two values of the parameter \(b_{nm}\) which is defined by Eq. (10). Thus, the four parameters involved are related to each other and to the energy by the relation

    $$\frac{1}{{m_{2} }} \left( {b_{n\prime m\prime }^{2} - b_{{{\text{nm}}}}^{2} } \right) = \frac{1}{{m_{1} }} \left( {a_{{{\text{nm}}}}^{2} - a_{n\prime m\prime }^{2} } \right) = \frac{2}{{\hbar^{2} }} \left( {E_{{{\text{onmk}}}} - E_{{{\text{on}}\prime m\prime k\prime }} } \right).$$
    (77)

    They are also related by the boundary conditions (11), (12). The orthogonality can consequently be proved by defining \({\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right)\) from the second part of Eq. (18) and using Eqs. (73), (75), (77). Accordingly, for fixed \(m\) and \(n \ne n^{\prime}\):

    $$\mathop \int \limits_{0}^{\infty } {\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right){ \mathcal{T}}_{n\prime ,m}^{\left( 1 \right)} \left( \rho \right) \rho d\rho = \frac{{Rm_{1} }}{{\left( {a_{{{\text{nm}}}}^{2} - a_{n\prime m}^{2} } \right)}}\left[ {J_{m} \left( {a_{{{\text{nm}}}} R} \right)B_{n\prime } - J_{m} \left( {a_{n\prime m} R} \right)B_{n} } \right],$$
    (78)

    where

    $$B_{n} = \frac{{a_{{{\text{nm}}}} }}{{m_{1} }}J_{m}^{^{\prime}} \left( {a_{{{\text{nm}}}} R} \right) - \frac{{b_{{{\text{nm}}}} }}{{m_{2} }} \frac{{J_{m} \left( {a_{{{\text{nm}}}} R} \right)}}{{K_{m} \left( {b_{{{\text{nm}}}} R} \right)}} K_{m}^{^{\prime}} \left( {b_{{{\text{nm}}}} R} \right).$$
    (79)

    But from the boundary condition (12)

    $$B_{n} = B_{{n^{\prime}}} = 0.$$
    (80)

    It then follows from (78) that

    $$\mathop \int \limits_{0}^{\infty } {\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right){ \mathcal{T}}_{{n^{\prime},m}}^{\left( 1 \right)} \left( \rho \right) \rho d\rho = 0 \quad for \quad n \ne n^{\prime}$$
    (81)

    On the other hand, for \(n = n^{\prime}\) the normalization condition follows from Eqs. (74), (76). According to these equations

    $$\begin{gathered} \mathop \int \limits_{0}^{\infty } \left( {{\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right)} \right)^{2} \rho d\rho \hfill \\ = \frac{{R^{2} }}{2}\left[ { - J_{m + 1} \left( {a_{{{\text{nm}}}} R} \right) J_{m - 1} \left( {a_{{{\text{nm}}}} R} \right) + \frac{{J_{m}^{2} \left( {a_{{{\text{nm}}}} R} \right)}}{{K_{m}^{2} \left( {b_{{{\text{nm}}}} R} \right)}} K_{m + 1} \left( {b_{{{\text{nm}}}} R} \right) K_{m - 1} \left( {b_{{{\text{nm}}}} R} \right)} \right], \hfill \\ \end{gathered}$$
    (82)

    The normalization condition (82) was given in Brown and Spector [38]. However, the present calculations have the advantage that they are derived in the general case of different masses and that the orthogonal relation (81) has been proved. In fact, Brown and Spector [38] have dealt only with one wave function and thus the orthonormal relation has not been discussed. Also, they have considered the special case of equal masses.

  3. (3)

    In the presence of a magnetic field, the elements of \(\left\{ {{\mathcal{T}}_{n^{\prime},m}^{\left( 1 \right)} \left( \rho \right)} \right\}\) and \(F_{{{\text{nm}}}} \left( \rho \right)\) are defined by the first part of Eq. (18) and by Eq. (21) where \(F_{{{\text{in}}}} \left( \rho \right), F_{{{\text{out}}}} \left( \rho \right)\) are now defined by Eqs. (53), (54). Thus, the orthogonality of the elements of \(\left\{ {{\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right)} \right\}\) depends on the orthogonality of the hypergeometric functions \({}_{1}^{{}} F_{1}^{{}} , U\) which was given in textbooks only over an infinite interval, for which \(\rho\) varies from \(0\) to \(\infty\). In the present work, the proof of the orthogonality relation necessitates the consideration of integrals over intervals that represent \(\rho\) from \(0\) to \(R\) or from \(R\) to \(\infty\). In order to deal with these integrals, we consider Eq. (48) for two different energy eigenvalues \(E_{{{\text{on}}_{1} {\text{mk}}}}\) and \(E_{{{\text{on}}_{2} {\text{mk}}}}\). Here, the quantum numbers \(m, k\) are fixed. The difference between the corresponding values \(\tilde{E}_{1} , \tilde{E}_{2}\) of \(\tilde{E}\) is accordingly given from Eq. (49) by

    $$\tilde{E}_{1} - \tilde{E}_{2} = \frac{{m^{*} \left( \rho \right)}}{eB\hbar }\left( {E_{o1} - E_{o2} } \right).$$
    (83)

    In Eq. (83) \(E_{{on_{i} mk}}\) has been denoted by \(E_{oi}\), \(i = 1,2\), for simplicity. It then follows from Eq. (48) that

    $$4\zeta \frac{{d^{2} F_{i} }}{{d\zeta^{2} }} + 4\frac{{dF_{i} }}{d\zeta } - \zeta F_{i} - \frac{{m^{2} F_{i} }}{\zeta } + 4\tilde{E}_{i} F_{i} = 0, i = 1,2$$
    (84)

    In Eq. (84), \(F_{i}\) stands either for \(\left( {F_{{{\text{in}}}} } \right)_{i}\) in the region \(\rho < R\) or for \(\left( {F_{{{\text{out}}}} } \right)_{i}\) in the region \(\rho > R\). We now multiply Eq. (84) for \(i = 1\) by \(F_{2}\) and for \(i = 2\) by \(F_{1}\). We then subtract the resulting two equations and use Eq. (83) to find

    $$\frac{d}{d\zeta }\left[ {\frac{\zeta }{{m^{*} \left( \rho \right)}}\left( {F_{2} \frac{{dF_{1} }}{d\zeta } - F_{1} \frac{{dF_{2} }}{d\zeta }} \right)} \right] + \frac{1}{eB\hbar }\left( {E_{o1} - E_{o2} } \right)F_{1} F_{2} = 0.$$
    (85)

    For the region \(\rho < R\) we integrate the above equation with respect to \(\zeta\) from \(0\) to \(\zeta_{R}\) while for the region \(\rho > R\) we integrate from \(\zeta_{R}\) to \(\infty\). It can consequently be shown after adding the resulting two equations that

    $$\left[ {\frac{\zeta }{{m_{1} }}\left( {F_{2} \frac{{dF_{1} }}{d\zeta } - F_{1} \frac{{dF_{2} }}{d\zeta }} \right)_{{{\text{in}}}} } \right]_{0}^{{\zeta_{R} }} + \left[ {\frac{\zeta }{{m_{2} }}\left( {F_{2} \frac{{dF_{1} }}{d\zeta } - F_{1} \frac{{dF_{2} }}{d\zeta }} \right)_{{{\text{out}}}} } \right]_{{\zeta_{R} }}^{\infty } = \frac{1}{eB\hbar }\left( {E_{o2} - E_{o1} } \right)\mathop \int \limits_{0}^{\infty } F_{{n_{1} m}} F_{{n_{2} m}} d\zeta .$$
    (86)

    The L.H.S of (86) vanishes due to the boundary conditions (11), (12), and due to the fact that.

    \(\left( {F_{i} } \right)_{in} \to 0\) for \(\zeta \to 0\) and \(\left( {F_{i} } \right)_{{{\text{out}}}} \to 0\) for \(\zeta \to \infty\).

    Accordingly, for \(E_{o2} \ne E_{o1}\) we find

    $$\mathop \int \limits_{0}^{\infty } F_{{n_{1} m}} F_{{n_{2} m}} d\zeta = \mathop \int \limits_{0}^{\infty } {\mathcal{T}}_{{n_{1} ,m}}^{\left( 1 \right)} \left( \zeta \right) {\mathcal{T}}_{{n_{2} ,m}}^{\left( 1 \right)} \left( \zeta \right) d\zeta = 0, for n_{1} \ne n_{2} ,$$
    (87)

    which also implies that

    $$\mathop \int \limits_{0}^{\infty } {\mathcal{T}}_{{n_{1} ,m}}^{\left( 1 \right)} \left( \rho \right) {\mathcal{T}}_{{n_{2} ,m}}^{\left( 1 \right)} \left( \rho \right) \rho d\rho = 0, for n_{1} \ne n_{2} .$$
    (88)

    The last equation represents the orthogonality of the elements of the set \(\left\{ {{\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right)} \right\}\). It can be alternatively expressed as

    $$\mathop \int \limits_{0}^{R} \left( {F_{in} } \right)_{1} \left( {F_{in} } \right)_{2} \rho d\rho + \mathop \int \limits_{R}^{\infty } \left( {F_{out} } \right)_{1} \left( {F_{out} } \right)_{2} \rho d\rho = 0, for n_{1} \ne n_{2}$$
    (89)

    where \(F_{in} , F_{out}\) are defined by Eqs. (53), (54) receptively.

  4. (4)

    In this part we proceed to prove that

    $${\text{In}}\left( {I_{2} } \right)_{nn}^{m + 1} = \left( {I_{3} } \right)_{nn}^{m} ,$$
    (90)

    which has been used in the absence (Sec. 3, Eq. (29)) and presence (Sec. 5) of a magnetic field. We start by the relations

    $$\left( {I_{3} } \right)_{nn}^{m} = \mathop \int \limits_{0}^{\infty } {\mathcal{T}}_{n,m + 1}^{\left( 3 \right)} \left( \rho \right) {\mathcal{T}}_{n,m}^{\left( 1 \right)} \left( \rho \right) \rho d\rho$$
    (91)

    and

    $$\left( {I_{2} } \right)_{{{\text{nn}}}}^{m + 1} = \mathop \int \limits_{0}^{\infty } {\mathcal{T}}_{n,m}^{\left( 2 \right)} \left( \rho \right) {\mathcal{T}}_{n,m + 1}^{\left( 1 \right)} \left( \rho \right) \rho d\rho$$
    (92)

    which follows directly from Eqs. (26), (27). Substitution of the first part of Eq. (18) and of Eqs. (58), (59) in Eqs. (91), (92) consequently leads to

    $$\left( {I_{3} } \right)_{nn}^{m} = \mathop \int \limits_{0}^{\infty } \rho F_{nm} \left[ {\frac{d}{d\rho } + \frac{m + 1}{\rho } + \frac{eB}{{2\hbar }}\rho } \right]F_{n,m + 1} d\rho$$
    (93)

    and

    $$\left( {I_{2} } \right)_{nn}^{m + 1} = \mathop \int \limits_{0}^{\infty } \rho F_{n,m + 1} \left[ { - \frac{d}{d\rho } + \frac{m}{\rho } + \frac{eB}{{2\hbar }}\rho } \right]F_{{{\text{nm}}}} d\rho$$
    (94)

    In the absence of a magnetic \(B = 0\) and accordingly, the third term in the above two equations does not exist. In all cases, this term is identical in both the expressions for \(\left( {I_{3} } \right)_{nn}^{m}\), \(\left( {I_{2} } \right)_{nn}^{m + 1}\).

    On the other hand, the first term in Eq. (93) gives rise to the integral

    $$J = \mathop \int \limits_{0}^{\infty } \left( {\frac{d}{d\rho }\left( {F_{n,m + 1} } \right)} \right)F_{n,m} \rho d\rho ,$$
    (95)

    which can be divided into two parts

    $$J = \mathop \int \limits_{0}^{R} \left( {\frac{d}{d\rho }\left( {F_{n,m + 1} } \right)_{in} } \right)\left( {F_{n,m} } \right)_{in} \rho d\rho + \mathop \int \limits_{R}^{\infty } \left( {\frac{d}{d\rho }\left( {F_{n,m + 1} } \right)_{{{\text{out}}}} } \right)\left( {F_{n,m} } \right)_{{{\text{out}}}} \rho d\rho .$$
    (96)

    The integration of the above two integrals by parts yields

    $$J = - \mathop \int \limits_{0}^{R} \left( {F_{n,m + 1} } \right)_{in} \frac{d}{d\rho }\left[ {\left( {F_{nm} } \right)_{in} \rho } \right]d\rho - \mathop \int \limits_{R}^{\infty } \left( {F_{n,m + 1} } \right)_{out} \frac{d}{d\rho }\left[ {\left( {F_{nm} } \right)_{out} \rho } \right]d\rho$$
    (97)
    $$= - \mathop \int \limits_{0}^{\infty } \rho F_{n,m + 1} \left[ {\frac{d}{d\rho }\left( {F_{{{\text{nm}}}} } \right) + \frac{{F_{{{\text{nm}}}} }}{\rho }} \right]d\rho .$$
    (98)

    The integrated two terms in Eq. (97) have been canceled due to the boundary condition (11) and due to the choice that \(F_{nm}\) should vanish at \(\rho = 0\) and \(\rho \to \infty\). On substituting from Eq. (98) in (93) the required relation (90) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhail, I.F.I., Ismail, I.M.M. & El Shafee, M.M. Rashba effect in cylindrical quantum well wire with finite confining potential. Indian J Phys 96, 2717–2730 (2022). https://doi.org/10.1007/s12648-021-02227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02227-6

Keywords

Navigation