Skip to main content
Log in

Concentration dependence of white light generation in Dy3+-doped lithium-fluoroborophosphate glasses

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A new series of Dy3+-doped lithium-fluoroborophosphate glasses have been prepared by conventional melt-quenching technique and explored by XRD, FTIR, optical absorption, photoluminescence and decay spectral measurements . XRD results confirm the amorphous nature of the prepared glass. The physical properties were calculated with density and refractive index measurements. FTIR spectra reveal the various stretching and bending vibration of borate (BO3 and BO4) and also phosphate (PO4) networks. The absorption spectra exhibit nine absorption peaks from the ground state 6H15/2 to various excited states. Using absorption spectra ligand field environment around the Dy3+ ions, Judd–Ofelt parameters, optical band gap and Urbach’s energy were calculated and reported. The JO theory has been applied to calculate the oscillator strengths and to evaluate the radiative properties of the emission transitions of Dy3+ ions in the prepared glasses. The luminescence spectra exhibit three transitions 4F9/2 → 6HJ (J = 9/2, 11/2, 13/2) at 483 nm (blue), 574 nm (yellow) and 663 nm (red), respectively. The Inokuti–Hirayama (IH) model (S = 6) fits well with non-exponential decay curves and indicates dipole–dipole interaction between donor and acceptor Dy3+ ions through cross-relaxation. The (x, y) coordinates and CCT values of the prepared glasses are found to be near the white light region representing the suitability of synthesized glasses for solid-state lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P Sailaja and S K Mahamuda J. Alloys Compds. 786 744 (2019)

    Article  Google Scholar 

  2. P Babu and C K Jayasankar, J. Opt. Mater. 15 65 (2000)

    Article  Google Scholar 

  3. J S Kumar, A M Bahu, N K Giri, S B Rai and L R Moorthy J. Lumin. 130 1916 (2010)

    Article  Google Scholar 

  4. Ch Basavapoornima, C K Jayasankar and P P Chandrachoodan Physica B 404 235 (2009)

    Article  ADS  Google Scholar 

  5. M V Sasikumar, D Rajesh, A Balakrishna and Y C Ratnakaram J. Mol. Struct. 1041 100 (2013)

    Article  ADS  Google Scholar 

  6. S Arunkumar and K Marimuthu J. Alloys Compds. 565 104 (2013)

    Article  Google Scholar 

  7. J Pisarska, W A Pisarski and W Ryba-Romanowski Opt. Laser Tech. 42 805 (2010)

    Article  ADS  Google Scholar 

  8. R K Brow and J Non-Cryst Solids 263–264 1 (2000)

    Google Scholar 

  9. N Kiran and A Suresh J. Mol. Struct. 1054–1055 6 (2013)

    Article  ADS  Google Scholar 

  10. K Srinivasulu and I Omkaram J. Phys. Chem. A 116 3547 (2012)

    Article  Google Scholar 

  11. S Ibrahim and M Abbel-Baki Opt. Eng. 51 093401 (2012)

    ADS  Google Scholar 

  12. N Vijaya Spectrochem. Acta Part A 113 145 (2013)

    Article  ADS  Google Scholar 

  13. M Jayasimhari and K Jang J. Appl. Phys. 106 013105 (2019)

    Article  ADS  Google Scholar 

  14. L Koudelka and P Mosner Mater. Lett. 42 194 (2000)

    Article  Google Scholar 

  15. P P Pawar, S R Munishwar and R S Gedam Solid State Sci. 64 41 (2017)

    Article  ADS  Google Scholar 

  16. R Vijayakumar, G Venkataiah and K Marimuthu Physica B 457 287 (2015)

    Article  ADS  Google Scholar 

  17. P Mosner and M Vorokhta, J. Non-Cryst. Solids 375 1 (2013)

    Article  ADS  Google Scholar 

  18. L Koudelka, J Jirak and P Mosner J. Mater. Sci. 41 4636 (2006)

    Article  ADS  Google Scholar 

  19. R T Karunakaran and K Marimuthu Physica B 404 3995 (2009)

    Article  ADS  Google Scholar 

  20. F Munoz and L Montagne J. Non-Cryst. Solids 355 2571 (2009)

    Article  ADS  Google Scholar 

  21. M Vijayakumar, K Mahesvaran and K Marimuthu J. Opt. Mater. 37 695 (2014)

    Article  Google Scholar 

  22. K Venkata Krishnaiah, K Upendra Kumar and C K Jayasankar Mater. Express 3 61 (2013)

    Article  Google Scholar 

  23. X-Y Sun, W Shuai, X Liu, P Gao and S-M Huang J. Non-Cryst. Solids 368 51 (2013)

    Article  ADS  Google Scholar 

  24. D D Ramteke and R S Gedam Spect. Lett. 48 417 (2015)

    Article  ADS  Google Scholar 

  25. V Uma, K Marimuthu and G Muralidharan, J. Fluores. 26 2281 (2016)

    Article  Google Scholar 

  26. P Karthikeyan, S Arunkumar, K Annapoorani and K Marimuthu Spectrochem. Acta Part A 193 422 (2018)

    Article  ADS  Google Scholar 

  27. V Anthony Raj, K Maheshvaran, J D’Silva, I Arul Rayappan and A I P Conf Proc. 2115 030259 (2019)

    Google Scholar 

  28. V AnthonyRaj, K Maheshvaran, K Marimuthu and I ArulRayappan Ind. J. Phys. 74 1395 (2020)

    Article  Google Scholar 

  29. I Bulus, S A Dalhatu and R Hussin Int. J. Modern Phys. B 311 750101 (2017)

    Google Scholar 

  30. P Pawar, S Munishwar and R Gedam J. Alloys Compd. 660 347 (2016)

    Article  Google Scholar 

  31. K Selvaraju and K Marimuthu J. Lumin. 132 1171 (2012)

    Article  Google Scholar 

  32. R A Adams and R W Douglas Soc. Glass Tech. 43 147 (1959)

    Google Scholar 

  33. I Bulus and S A Dalhatu Sci. World J. 12 98 (2017)

    Google Scholar 

  34. M Vijayakumar and K Marimuthu J. Alloys and Compds. 629 230 (2015)

    Article  Google Scholar 

  35. R T Karunakaran, K Marimuthu and S SurendraBabu J. Lumin. 130 1067 (2010)

    Article  Google Scholar 

  36. C R Gautam and A K Yadav Opt. Photon J. 3 1 (2013)

    Article  ADS  Google Scholar 

  37. E I Kamitsos, M A Karakassides and G D Chryssikos Phy. Chem. Glasses 28 203 (1987)

    Google Scholar 

  38. S Selvi, G Venkataiah, S Arunkumar, G Muralidharan and K Marimuthu Physica B 454 72 (2014)

    Article  ADS  Google Scholar 

  39. A S Tenny and J J Wong Chem. Phy. 56 5516 (1972)

    ADS  Google Scholar 

  40. T Q Leow, P M Leong, T Y Eeu, Z Ibrahim and R Hussin Sains Malaysiana 43 929 (2014)

    Google Scholar 

  41. S Kumar, P Vinarier, A Levasseur and K J Rao J. Solid State Chem. 177 1723 (2004)

    Article  ADS  Google Scholar 

  42. L Balu J. Pure Applied Industrial Phy. 6 184 (2016)

    Google Scholar 

  43. W T Carnall, P R Fields, K Rajnak and J Chem Phys. 49 4424 (1968)

    Google Scholar 

  44. K Maheshvaran and K Marimuthu J. Alloys Compds. 509 7427 (2011)

    Article  Google Scholar 

  45. C K Jorgensen and B R Judd Mol. Phys. 8 281 (1964)

    Article  ADS  Google Scholar 

  46. G Lakshminarayana, S O Baki and A Lira J. Lumin. 186 283 (2017)

    Article  Google Scholar 

  47. B Shanmugavelu and V V Ravikanthkumar J. Lumin. 146 358 (2014)

    Article  Google Scholar 

  48. J L Adam, A D Docq and J Lucas J. Solid State Chem. 75 403 (1988)

    Article  ADS  Google Scholar 

  49. K A Gschneidner and L Eyring, Handbook on the Physics and Chemistry of Rare Earths, Elsevier Publishers, North Holland Publishing Company, 1st edition 25 (1998)

  50. S Mahamuda, K Swapna, P Packiyaraj, A S Rao and G V Prakash J. Lumin. 153 382 (2014)

    Article  Google Scholar 

  51. M V Vijayakumar, B C Jamalaiah, K R Gopal and R R Reddy J. Lumin. 132 86 (2012)

    Article  Google Scholar 

  52. K Linganna and C K Jayasankar J. Quantitative Spect. Radiative Transfer 118 40 (2013)

    Article  ADS  Google Scholar 

  53. N F Mott and E A Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, Second ed.,(1979)

  54. J Tauc Amorphous and Liquid Semiconductors, vol 159. (New York: Plenum Press) (1974)

    Book  Google Scholar 

  55. P Narwal, M S Dahiya, A Agarwal, A Hooda and S Khasa J. Lumin. 209 121 (2019)

    Article  Google Scholar 

  56. Y Chen, Q Nie, T Xu, S Dai, X Wang, X Shen and J Non-Crystal Solids 354 3468 (2008)

    Google Scholar 

  57. B H Venkataraman and K B R Varma Opt. Mater. 28 1423 (2006)

    Article  ADS  Google Scholar 

  58. I Khan J. Alloys. Compd. 774 244 (2019)

    Article  Google Scholar 

  59. M Mariyappan and K Marimuthu J. Alloys. Compd. 723 100 (2017)

    Article  Google Scholar 

  60. L Yuliantini, E Kaewnuam and R Hidayat Opt. Mater. 85 382 (2018)

    Article  ADS  Google Scholar 

  61. M Gokce and D Kocyigit Opt. Mater. 89 568 (2019)

    Article  ADS  Google Scholar 

  62. S K Nayab Rasool, L Rama Moorthy and C K Jayasankar Solid state Sci. 22 82 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Arul Rayappan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, V.A., Maheshvaran, K. & Rayappan, I.A. Concentration dependence of white light generation in Dy3+-doped lithium-fluoroborophosphate glasses. Indian J Phys 96, 2979–2991 (2022). https://doi.org/10.1007/s12648-021-02215-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02215-w

Keywords

Navigation