Skip to main content
Log in

Dy3+-doped P2O5–Al2O3–K2O–CaF2–LiF glasses: thermal, spectroluminescence and photometric properties

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Fluorophosphate (PAKCLf: P2O5-Al2O3-K2O-CaF2-LiF) glasses with Dy3+ concentration of 0.01, 0.05, 0.1, 0.5, 1.0, 2.0 and 3.0 mol% were fabricated by pouring the melt and sudden quenching process. The glass stability factor of 106°C was calculated by glass transition (563°C) and crystallite (669°C) temperatures. The energy bandgap (Eg) of Dy3+:PAKCLf glasses is calculated for (αhν)2 (direct) and (αhν)1/2 (indirect) allowed transitions. From optical absorption, the oscillator strength and spectroscopic intensity (Ω2,4,6) parameters by performing Judd–Ofelt calculations were estimated to evaluate the radiative transition properties of 4F9/2 level in Dy3+ ions. The emission spectra consist of two intense bands in blue (485 nm: 4F9/26H15/2) and yellow (576 nm: 4F9/26H13/2) regions by stimulating at 349 nm. The decay curves demonstrate the non-exponential nature from 0.5 to 3.0 mol% of Dy3+ and fitted well to the Inokuti–Hirayama model. The findings of stimulated emission cross-section (5.20 × 10–21 cm2), optical gain (29.59 × 10–25 cm2s), and quantum efficiency (97%) for Dy3+:PAKCLf glasses could be potentially utilized as optical devices. The photometric parameters like CIE colour coordinates and correlated colour temperatures (CCT:6300-6900 K) of Dy3+:PAKCLf glasses reveal the application of white light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dimple P D, Ballal A, Nuwad J and Tyagi A K 2014 J. Lumin. 148 230

    Article  Google Scholar 

  2. Dimple P D and Tyagi A K 2009 Trans. Tech. Publ. Solid State Phenom. 155 113

    Article  Google Scholar 

  3. Srirupa M, Dimple P D, Manoj N and Tyagi A K 2012 J. Nanopart. Res. 14 814

    Article  Google Scholar 

  4. Jha K and Jayasimhadri M 2016 J. Alloys Compd. 688 833

    Article  CAS  Google Scholar 

  5. Jha K, Vishwakarma A K, Jayasimhadri M, Haranath D and Jang K 2021 J. Non-Cryst. Solids 553 120516

    Article  CAS  Google Scholar 

  6. Rajesh D, Brahmachary K, Ratnakaram Y C, Kiran N, Baker A P and Wang G-G 2015 J. Alloys Compd. 646 1096

    Article  CAS  Google Scholar 

  7. Vijayakumar R, Venkataiah G and Marimuthu K 2015 J. Phys. B Condens. Matter 457 287

    Article  CAS  Google Scholar 

  8. Liu X Y, Guo H, Liu Y, Ye S, Peng M Y, Zhang Q Y et al 2016 J. Mater. Chem. C 4 2506

    Article  CAS  Google Scholar 

  9. Masai H, Yamada Y, Suzuki Y, Teramura K, Kanemitsu Y and Yoko T 2013 Sci. Rep. 3 3541

    Article  Google Scholar 

  10. Jha K, Vishwakarma A K, Jayasimhadri M and Haranath D 2017 J. Alloys Compd. 719 116

    Article  CAS  Google Scholar 

  11. Sumalatha C, Ramachari D, Venkateswarlu M, Rekha Rani P, Swapna K, Mahamuda S K et al 2020 Spectrochim. Acta A Mol. Biomol. Spectrosc. 240 118568

    Article  CAS  Google Scholar 

  12. Ramachari D, Rama Moorthy L and Jayasankar C K 2014 Ceram. Int. 40 11115

    Article  CAS  Google Scholar 

  13. Ami Hazlin M N, Halimah M K and Muhammad F D 2018 J. Lumin. 196 498

    Article  CAS  Google Scholar 

  14. Selvi S, Venkataiah G, Arunkumar S, Muralidharan G and Marimuthu K 2014 Physica B 454 72

    Article  CAS  Google Scholar 

  15. Ravi O, Reddy C M, Reddy B S and Raju B D P 2014 Opt. Commun. 312 263

    Article  CAS  Google Scholar 

  16. Uma V, Maheshvaran K, Marimuthu K and Muralidharan G 2016 J. Lumin. 176 15

    Article  CAS  Google Scholar 

  17. Ming C, Song F, An L and Ren X 2013 Appl. Phys. Lett. 102 20

    Article  Google Scholar 

  18. Jayasimhadri M, Jang K, Lee H S, Chen B, Yi S S and Jeong J H 2009 J. Appl. Phys. 106 013105

    Article  Google Scholar 

  19. Zhu C, Yang Y, Liang X, Yuan S and Chen G 2006 J. Lumin. 126 707

    Article  Google Scholar 

  20. Viana B, Palazzi M and LeFol O 1997 J. Non-Cryst. Solids 215 96

    Article  CAS  Google Scholar 

  21. Ramachari D, Rama Moorthy L and Jayasankar C K 2013 Mater. Res. Bull. 48 3607

    Article  CAS  Google Scholar 

  22. El-Diasty F, Abdel Wahab F A and Abdel-Baki M 2006 J. Appl. Phys. 100 093511

    Article  Google Scholar 

  23. Meejitpaisan P, Doddoji Ramachari, Kothan S, Jayasankar C K and Kaewkhao J 2021 Ceram Int. 47 1962

    Article  CAS  Google Scholar 

  24. Gandhi Y, Ramachandra Rao M V, Srinvasa Rao Ch, Srikumar T, Kityk I V and Veeraiah N 2010 J. Appl. Phys. 108 23102

    Article  Google Scholar 

  25. Bhargavi K, Sundara Rao M, Sudarsan V, Srinivasa Rao Ch, Piasecki M, Kityk I V et al 2014 Opt. Mater. 36 1189

    Article  CAS  Google Scholar 

  26. Kalpana T, Brik M G, Sudarsan V, Naresh P, Ravi Kumar V, Kityk I V et al 2015 J. Non-Cryst. Solids 419 75

    Article  CAS  Google Scholar 

  27. Dana H K, Tap T D, Nguyen-Truong H, Minh Ty N, Zhou D and Qiu J 2019 Mater. Res. 22 1

    Google Scholar 

  28. Sreedhar V B, Ramachari D, Kiran Kumar K and Minnam Reddy V R 2021 J. Non-Cryst. Solids 553 120521

    Article  CAS  Google Scholar 

  29. Bhatia B, Meena S L, Parihar V and Poonia M 2015 New J. Glass Ceram. 5 44

    Article  Google Scholar 

  30. Judd B R 1962 Phys. Rev. 127 750

    Article  CAS  Google Scholar 

  31. Ofelt G S 1962 J. Chem. Phys. 37 511

    Article  CAS  Google Scholar 

  32. Jayasankar C K and Rukmini E 1997 Physica B 240 273

    Article  CAS  Google Scholar 

  33. Kaminski A A 1990 2nd ed (Berlin: Springer) 14

  34. Yang Z, Chen W and Luo L 2005 J. Non-Cryst. Solids 351 2513

    Article  CAS  Google Scholar 

  35. Dwivedi Y and Rai S B 2009 Opt. Mater. 31 1472

    Article  CAS  Google Scholar 

  36. Tripathi G, Rai V K and Rai S B 2005 Spectrochim. Acta A Mol. Biomol. Spectrosc. 62 1120

    Article  Google Scholar 

  37. Mahato K K, Rai A and Rai S B 2005 Spectrochim. Acta A Mol. Biomol. Spectrosc. 61 431

    Article  CAS  Google Scholar 

  38. Nachimuthu P, Jagannathan R, Nirmal Kumar V and Narayana Rao D 1997 J. Non-Cryst. Solids 217 215

    Article  CAS  Google Scholar 

  39. Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang H J et al 2002 Chem. Mater. 14 2224

    Article  CAS  Google Scholar 

  40. Su Q, Pei Z, Chi L, Zhang H, Zhang Z and Zou F 1993 J. Alloys Compd. 192 25

    Article  CAS  Google Scholar 

  41. Nayab Rasool S K, Rama Moorthy L and Jayasankar C K 2013 Sol. State Sci. 22 82

    Article  Google Scholar 

  42. Linganna K, Srinivasa Rao Ch and Jayasankar C K 2013 J. Quant. Spectrosc. Radiat. Transf. 118 40

    Article  CAS  Google Scholar 

  43. Upendra Kumar K, Srinivasa Rao Ch, Jayasankar C K, Surendra Babu S, Lucio J L, Valleo H et al 2011 Phys. Procedia 13 70

    Article  Google Scholar 

  44. Kesavulu C R and Jayasankar C K 2011 Mater. Chem. Phys. 130 1078

    Article  CAS  Google Scholar 

  45. Saleem S A, Jamalaiah B C, Jayasimhadri M, Srinivasa Rao A, Jang K and Rama Moorthy L 2011 J. Quant. Spectrosc. Radiat. Transf. 112 78

    Article  CAS  Google Scholar 

  46. Pisarska J 2009 J. Phys. Condens. Matter 21 285101

    Article  Google Scholar 

  47. Praveena R, Vijaya R and Jayasankar C K 2008 Spectrochim. Acta A Mol. Biomol. Spectrosc. 70 577

    Article  CAS  Google Scholar 

  48. Inokuti M and Hirayama F 1965 J. Chem. Phys. 43 1978

    Article  CAS  Google Scholar 

  49. Balakrishnaiah R, Vijaya R, Babu P, Jayasankar C K and Reddy M L P 2007 J. Non-Cryst. Solids 353 1397

    Article  CAS  Google Scholar 

  50. Erdem T, Nizamoglu S, Sun X W and Demir H V 2010 Opt. Express 18 340

    Article  CAS  Google Scholar 

  51. McCamy C S 1992 Color Res. Appl. 17 142

    Article  Google Scholar 

  52. Damak K, Sayed Yousef E, Rüssel C and Maâle R 2014 J. Quant. Spectrosc. Radiat. Transf. 134 55

    Article  CAS  Google Scholar 

  53. Sun X Y, Wu S, Liu X, Gao P and Huang S M 2013 J. Non-Cryst. Solids 368 51

    Article  CAS  Google Scholar 

  54. Qian J, Luo Q, Zhao D, Cui S, Qiao X, Fan X et al 2012 Opt. Mater. 34 700

    Article  CAS  Google Scholar 

  55. Sun X Y, Huang S M, Gong X S, Gao Q C, Ye Z P and Cao C Y 2010 J. Non-Cryst. Solids 356 98

    Article  CAS  Google Scholar 

  56. Fuchs E C, Sommer C, Wenzl F P, Bitschnau B, Paulitsch A H, Muhlanger A et al 2009 Mater. Sci. Eng. B 156 73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. C K Jayasankar, Department of Physics, Sri Venkateswara University, Tirupati, for his help in preparing and characterization of glass samples reported in the present work (DAE-BRNS, BARC, Mumbai, Government of India, File No. 2009/34/36/BRNS/3174, Dated: 12-02-2010, and UGC-BSR Faculty Fellow, New Delhi, No. F.18-1/2011/(BSR), Dated: 24-11-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachari Doddoji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran Kumar, K., Doddoji, R., Sreedhar, V.B. et al. Dy3+-doped P2O5–Al2O3–K2O–CaF2–LiF glasses: thermal, spectroluminescence and photometric properties. Bull Mater Sci 45, 43 (2022). https://doi.org/10.1007/s12034-021-02631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02631-y

Keywords

Navigation