Skip to main content
Log in

Structural, magnetic, electronic and optical properties of cubic rare-earth vanadate perovskites PrVO3 and NdVO3: insights from GGA potentials

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

According to the first principles, the WIEN2k program based on density functional theory (DFT) calculations is utilized to investigate the structural, magnetic, electronic, and optical properties of rare-earth vanadate perovskites PrVO3 (PVO) and NdVO3 (NVO). All calculations were performed by utilizing the full-potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient approximation (GGA) under the potentials PBE-GGA, PBEsol-GGA, and WC-GGA. The optimized results show that the two compounds PVO, and NVO crystallize in a cubic structure with (Pm-3m) space group (No. 221) and lattice constants of (a = 3.8100 –3.8900 Å). Partial and total spin magnetic moments confirm the ferromagnetic (FM) nature of these compounds, and the major part of their total magnetic moments (MCell ≈ 4.0 and ≈ 5.0 μB) is contributed by V3+ ions through the FM 3d-2p exchange interaction V3+↑–O2−↓–V4+↑ within the ground-state energies. The calculated spin-polarized electronic band structures, density of states, and charge density indicate that PVO and NVO exhibit a half-metallic property for all three GGA potentials. It is found that PBE-GGA gives reasonable results consistent with the previous data. Also, the main optical features are calculated and discussed to complete the description of the distinctive physical properties of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R P Liferovich, R H Mitchell and J Solid State Chem 177 2188 (2004).

    Article  ADS  Google Scholar 

  2. R R Kumar, T Ramachandran, K Natarajan and M Muralidharan F Hamed and V Kurapati J Electron Mater 48 1694 (2019).

    ADS  Google Scholar 

  3. E Haye, F Capon, S Barrat, P Boulet and E Andre C Carteret and S Bruyere J Alloy Compd 657 631 (2016).

    Article  Google Scholar 

  4. M Rezaiguia, W Benstaali and A Abbad S Bentata and B Bouhafs J Supercond Nov Magn 30 2581 (2017).

    Article  Google Scholar 

  5. A T Apostolov I N Apostolova and J M Wesselinowa Eur Phys J B 88 328 (2015).

    Article  Google Scholar 

  6. A Abbad, W Benstaali, H A Bentounes and S Bentata Y Benmalem Solid State Commun 228 36 (2016).

    Article  ADS  Google Scholar 

  7. B Sattibabu, A K Bhatnagar, S Samatham, D Singh, S Rayaprol and D Das V Siruguri and V Ganesan J Alloy Compd 644 830 (2015).

    Article  Google Scholar 

  8. Y N Duan, X Fan and A Kutluk X J Du and Y L Song J Magn Mater 384 229 (2015). https://doi.org/10.1016/j.jmmm.2015.01.089

    Article  ADS  Google Scholar 

  9. B Bouadjemi, S Bentata and A Abbad W Benstaali and B Bouhafs Solid State Commun 168 6 (2013). https://doi.org/10.1016/j.ssc.2013.06.008

    Article  ADS  Google Scholar 

  10. M James, D Cassidy, D J Goossens and R L Withers J Solid State Chem 177 6 1886 (2004).

    Article  ADS  Google Scholar 

  11. O Haas, R P W J Struis and J M McBreen J Solid State Chem 177 3 1000 (2004).

    Article  ADS  Google Scholar 

  12. B V Prasad and G N Rao J W Chen and D S Babu Mater Chem Phys 126 918 (2011).

    Article  Google Scholar 

  13. J Shanker M B Suresh and D S Babu Mater Today-Proc 3 2091 (2016).

    Google Scholar 

  14. S Huang, G Zerihun, Z Tian, S Yuan, G Gong, C Yin and L Wang Ceram Int 40 13937 (2014).

    Article  Google Scholar 

  15. Y Su, J Zhang, Z Feng, Z Li, Y Shen and S Cao J Rare Earth 29 1060 (2011).

    Article  Google Scholar 

  16. N Sakai, K Yamaji, T Horita, Y P Xiong and H Yokokawa Ch 223-Rare-earth materials for Solid Oxide Fuel Cells (SOFC)- Handbook on the Physics and Chemistry of Rare Earths 35 (Elsevier B V) p 17 (2005) https://doi.org/10.1016/S0168-1273(05)35001-X

  17. J L Ye and C Wang W Ni and X H Sun J Alloy Compd 617 850 (2014).

    Article  Google Scholar 

  18. Y K Jeong, J H Lee, S J Ahn and H M Jang Solid State Commun 152 1112 (2012).

    Article  ADS  Google Scholar 

  19. A Wu, Z Wang, B Wang, X Ban, L Jiang and J Xu S Yuan and S Cao Solid State Commun 185 14 (2014).

    Article  ADS  Google Scholar 

  20. M Shao, S Cao, Y Wang and S Yuan B Kang and J Zhang Solid State Commun 152 947 (2012).

    Article  ADS  Google Scholar 

  21. H A R Aliabad, Z Barzanuni, Z B S R Sani and I Ahmad S J Asadabadi and H V M Dastras J Alloy Compd 690 942 (2017).

    Article  Google Scholar 

  22. S Terkhi, S Bentata and Z Aziz T Lantri and B Abbar Indian J Phys 92 847 (2018). https://doi.org/10.1007/s12648-018-1174-8

    Article  Google Scholar 

  23. B Sabir, G Murtaza, Q Mahmood and R Ahmad K C Bhamu Curr Appl Phys 17 1539 (2017). https://doi.org/10.1016/j.cap.2017.07.010

    Article  ADS  Google Scholar 

  24. T Usman and G Murtaza H Luo and A Mahmood J Supercond Nov Magn 30 1389 (2017).

    Article  Google Scholar 

  25. A H Reshak M S Abu-Jafar and Y Al-Douri J Appl Phys 119 245303 (2016). https://doi.org/10.1063/1.4954293

    Article  Google Scholar 

  26. Sandeep, D P Rai, A Shankar, M P Ghimire, R Khenata and R K Thapa J Magn Mater 417 313 (2016)

  27. S A Dar and V Srivastava U K Sakalle and G Pagare J Supercond Novel Magn 31 3201 (2018). https://doi.org/10.1007/s10948-018-4574-2

    Article  Google Scholar 

  28. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka, J Luitz, R Laskowski, F Tran and L Marks An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Institute of Materials Chemistry Getreidemarkt 9/165-TC, A-1060 Vienna, Austria (2019) http://susi.theochem.tuwien.ac.at/

  29. J P Perdew K Burke and M Ernzerhof Phys Rev Lett 77 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  30. F D Murnaghan PNAS 30 9 244 (1944)

  31. M E A Monir and F Z Dahou SN Appl Sci 2 465 (2020). https://doi.org/10.1007/s42452-020-2223-4

    Article  Google Scholar 

  32. R L Moreira and A Dias J Phys Chem Solid 68 1617 (2007).

    Article  ADS  Google Scholar 

  33. Z Huang and Y Zhao B Condens Matter 407 1075 (2012). https://doi.org/10.1016/j.physb.2011.12.132

    Article  ADS  Google Scholar 

  34. M Houari, B Bouadjemi, S Haid, M Matougui, T Lantri and Z Aziz S Bentata and B Bouhafs Indian J Phys 94 4 455 (2020). https://doi.org/10.1007/s12648-019-01480-0

    Article  Google Scholar 

  35. A S Verma, A Kumar and J Alloy Compd 541 210 (2012). https://doi.org/10.1016/j.jallcom.2012.07.027

    Article  Google Scholar 

  36. S A Khandy, D C Gupta and J Electron Mater 46 10 (2017). https://doi.org/10.1007/s11664-017-5620-8

    Article  Google Scholar 

  37. M Karimou, E Albayrak and A Tessilimy F Hontinfinde and R Yessoufou Chin J Phys 55 1769 (2017). https://doi.org/10.1016/j.cjph.2017.10.005

    Article  Google Scholar 

  38. G Nazir and A Ahmad M F Khan and S Tariq Comput Condens Matter 4 32 (2015). https://doi.org/10.1016/j.cocom.2015.07.002

    Article  Google Scholar 

  39. D P Rai, A Shankar and M P Ghimire Computational Materials Science 101 313 (2015). https://doi.org/10.1016/j.commatsci.2015.01.027

    Article  Google Scholar 

  40. S Berri J Sci Adv Mater Dev 3 2 254 (2018).

    Google Scholar 

  41. S G Said and S Azam S A Khan and M B Kanoun Comput Condens Matter 21 e00396 (2019). https://doi.org/10.1016/j.cocom.2019.e00396

    Article  Google Scholar 

  42. M Saad Comput Condens Matter 14 125 (2018).

    Article  Google Scholar 

  43. V Saidl et al. P Maly and T Jungwirth Nat Photon 11 91 (2017). https://doi.org/10.1038/nphoton.2016.255

Download references

Acknowledgments

Researchers would like to thank Deanship of Scientific Research, Qassim University for motivating publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Musa Saad H.-E..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad H.-E., M.M., Elhag, A. Structural, magnetic, electronic and optical properties of cubic rare-earth vanadate perovskites PrVO3 and NdVO3: insights from GGA potentials. Indian J Phys 96, 2731–2745 (2022). https://doi.org/10.1007/s12648-021-02197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02197-9

Keywords

Navigation