Skip to main content
Log in

Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, elastic and optoelectronic properties for cubic halide perovskites AGeX3 (A = K, Rb and Cs, X = F, Cl and Br) have been successfully studied in this paper, using the density functional theory with the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA-PBE). The modified Becke–Johnson (mBJ-GGA) potential approximation was used to describe the band structure more accurately. The calculated band structure from mBJ gives appropriate optoelectronic properties of these materials. Band structure calculations reveal a semiconducting behavior with a direct band gap at the R-point in the reciprocal lattice space, with values lying between 0.79 and 2.87 eV. The compounds of interest are mechanically stable, anisotropic and ductile in nature. The optical properties indicate that these compounds can be used in various optoelectronic devices operating in the visible and ultraviolet energies. To the best of our knowledge, this is the first quantitative theoretical prediction of the elastic, electronic and optical properties for these compounds which still awaits experimental confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J Bisquert The Physics of Solar Cells Perovskites, Organics, and Photovoltaic Fundamentals (CRC Press) (2017)

  2. C C Stoumpos, C D Malliakas, J A Peters, Z Liu, M Sebastian, J Im, T C Chasapis, A C Wibowo, D Y Chung and A J Freeman Cryst. Growth Des.13 2722 (2013)

    Article  Google Scholar 

  3. J Wei, N C Yeh, R P Vasquez and A Gupta J. Appl. Phys.83 7366 (1998)

    Article  ADS  Google Scholar 

  4. B Bouadjemi, S Bentata, A Abbad, W Benstaali and B Bouhafs Solid State Commun.168 6 (2013)

    Article  ADS  Google Scholar 

  5. S A Khandy and D C Gupta J. Electron. Mater.46 5531 (2017)

    Article  ADS  Google Scholar 

  6. S A Khandy, I Islam, D C Gupta, R Khenata, A Laref and S Rubab Mater. Res. Express5 105702 (2018)

    Article  ADS  Google Scholar 

  7. S A Khandy, I Islam, D C Gupta and A Laref J. Mol. Model.24 131 (2018)

    Article  Google Scholar 

  8. R Terki, H Feraoun, G Bertrand and H Aourag Phys. Status Solidi (b)242 1054 (2005)

    Article  ADS  Google Scholar 

  9. J Torrance, P Lacorre, A Nazzal, E Ansaldo and C Niedermayer Phys. Rev. B45 8209 (1992)

    Article  ADS  Google Scholar 

  10. A Moskvin, A Makhnev, L Nomerovannaya, N Loshkareva and A Balbashov Phys. Rev. B82 035106 (2010)

    Article  ADS  Google Scholar 

  11. J W Fergus Sens. Actuators B Chem.123 1169 (2007)

    Article  Google Scholar 

  12. A Cyza, A Kopia, Ł Cieniek and J Kusiński Mater. Today Proc.3 2707 (2016)

  13. M A Green, A Ho-Baillie and H J Snaith Nat. Photonics8 2134 (2014)

    Article  Google Scholar 

  14. F Hao, C C Stoumpos, D H Cao, R P Chang and M G Kanatzidis Nat. Photonics8 489 (2014)

    Article  ADS  Google Scholar 

  15. H J Snaith J. Phys. Chem. Lett.4 3623 (2013)

    Article  Google Scholar 

  16. T He, Q Huang, A Ramirez, Y Wang, K Regan, N Rogado, M Hayward, M Haas, J Slusky and K Inumara Nature411 54 (2001)

    Article  ADS  Google Scholar 

  17. H Fu and R E Cohen Nature403 281 (2000)

    Article  ADS  Google Scholar 

  18. Y Yamasaki, H Sagayama, N Abe, T Arima, K Sasai, M Matsuura, K Hirota, D Okuyama, Y Noda and Y Tokura Phys. Rev. Lett.101 097204 (2008)

    Article  ADS  Google Scholar 

  19. E Bousquet, M Dawber, N Stucki, C Lichtensteiger, P Hermet, S Gariglio, J M Triscone and P Ghosez Nature452 732 (2008)

    Article  ADS  Google Scholar 

  20. C Yu, Z Chen, J J Wang, W Pfenninger, N Vockic, J T Kenney and K Shum J. Appl. Phys.110 063526 (2011)

    Article  ADS  Google Scholar 

  21. L E Jones and R C Liebermann Phys. Earth Planet. Inter.9 101 (1974)

    Article  ADS  Google Scholar 

  22. J Im, C C Stoumpos, H Jin, A J Freeman and M G Kanatzidis J. Phys. Chem. Lett.6 3503 (2015)

    Article  Google Scholar 

  23. R A Jishi, O B Ta and A A Sharif J. Phys. Chem. C118 28344 (2014)

    Article  Google Scholar 

  24. S A Khandy and D C Gupta RSC Adv.6 48009 (2016)

    Article  Google Scholar 

  25. J Kim, S C Lee, S H Lee and K H Hong J. Phys. Chem. C119 4627 (2015)

    Article  Google Scholar 

  26. C Wehrenfennig, M Liu, H J Snaith, M B Johnston and L M Herz APL Mater.2 081513 (2014)

    Article  ADS  Google Scholar 

  27. M Liu, M B Johnston and H J Snaith Nature501 395 (2013)

    Article  ADS  Google Scholar 

  28. O Malinkiewicz, A Yella, Y H Lee, G M Espallargas, M Graetzel, M K Nazeeruddin and H J Bolink Nat. Photonics8 128 (2014)

    Article  ADS  Google Scholar 

  29. N J Jeon, J H Noh, W S Yang, Y C Kim, S Ryu, J Seo and S I Seok Nature517 476 (2015)

    Article  ADS  Google Scholar 

  30. Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos and D Credgington Nat. Nanotechnol.9 687 (2014)

    Article  ADS  Google Scholar 

  31. S Naeem, G Murtaza, R Khenata and M Khalid Phys. B Condens. Matter414 91 (2013)

    Article  Google Scholar 

  32. S A Khandy and D C Gupta RSC Adv.6 97641 (2016)

    Article  Google Scholar 

  33. K I Kobayashi, T Kimura, H Sawada, K Terakura and Y Tokura Nature395 677 (1998)

    Article  ADS  Google Scholar 

  34. B Raveau, A Maignan, C Martin and M Hervieu Chem. Mater.10 2641 (1998)

    Article  Google Scholar 

  35. B Sahli, H Bouafia, B Abidri, A Bouaza, A Akriche, S Hiadsi and A Abdellaoui Int. J. Mod. Phys. B30 1650230 (2016)

    Article  ADS  Google Scholar 

  36. L Protesescu, S Yakunin, M I Bodnarchuk, F Krieg, R Caputo, C H Hendon, R X Yang, A Walsh and M V Kovalenko Nano Lett.15 3692 (2015)

    Article  ADS  Google Scholar 

  37. A Miyata, A Mitioglu, P Plochocka, O Portugall, J T Wang, S D Stranks, H J Snaith and R J Nicholas Nat. Phys.11 582 (2015)

    Article  ADS  Google Scholar 

  38. D P McMeekin, G Sadoughi, W Rehman, G E Eperon, M Saliba, M T Hörantner, A Haghighirad, N Sakai, L Korte and B Rech Science351 151 (2016)

    Article  ADS  Google Scholar 

  39. H Zhu, Y Fu, F Meng, X Wu, Z Gong, Q Ding, M V Gustafsson, M T Trinh, S Jin and X Zhu Nat. Mater.14 636 (2015)

    Article  ADS  Google Scholar 

  40. D B Mitzi, C Feild, W Harrison and A Guloy Nature369 467 (1994)

    Article  ADS  Google Scholar 

  41. V Luaña, A Costales, A M Pendás, M Flórez and V M G Fernández Solid State Commun.104 47 (1997)

    Article  ADS  Google Scholar 

  42. C Dotzler, G Williams and A Edgar Curr. Appl. Phys.8 447 (2008)

    Article  ADS  Google Scholar 

  43. M Roknuzzaman, K K Ostrikov, H Wang, A Du and T Tesfamichael Sci. Rep.7 14025 (2017)

    Article  ADS  Google Scholar 

  44. P Hohenberg and W Kohn Phys. Rev. B136 864 (1964)

    Article  ADS  Google Scholar 

  45. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology) (2001)

  46. P Hohenberg and W Kohn Phys. Rev.136 B864 (1964)

    Article  ADS  Google Scholar 

  47. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  48. A D Becke and E R Johnson AIP (2006)

  49. B Bouadjemi, S Bentata, A Abbad and W Benstaali Solid State Commun.207 9 (2015)

    Article  ADS  Google Scholar 

  50. F D Murnaghan Proc. Natl. Acad. Sci. U. S. A.30 244 (1944)

  51. T Krishnamoorthy, H Ding, C Yan, W L Leong, T Baikie, Z Zhang, M Sherburne, S Li, M Asta and N Mathews J. Mater. Chem. A3 23829 (2015)

    Article  Google Scholar 

  52. M Brik Solid State Commun.151 1733 (2011)

    Article  ADS  Google Scholar 

  53. S Körbel, M A Marques and S Botti J. Mater. Chem. C4 3157 (2016)

    Article  Google Scholar 

  54. L Li, Y J Wang, D X Liu, C G Ma, M Brik, A Suchocki, M Piasecki and A Reshak Mater. Chem. Phys.188 39 (2017)

    Article  Google Scholar 

  55. G Murtaza and I Ahmad Phys. B Condens. Matter406 3222 (2011)

    ADS  Google Scholar 

  56. Z Huang, Y Zhao, H Hou and P Han Phys. B Condens. Matter407 1075 (2012)

    ADS  Google Scholar 

  57. A Yakoubi, O Baraka and B Bouhafs Results Phys.2 58 (2012)

    Article  ADS  Google Scholar 

  58. J Camargo-Martínez and R Baquero Phys. Rev. B86 195106 (2012)

    Article  ADS  Google Scholar 

  59. A Meziani, D Heciri and H Belkhir Phys. B Condens. Matter406 3646 (2011)

    ADS  Google Scholar 

  60. G Murtaza, I Ahmad and A Afaq Solid State Sci.16 152 (2013)

    Article  ADS  Google Scholar 

  61. B Philippe, B W Park, R Lindblad, J Oscarsson, S Ahmadi, E M Johansson and H K Rensmo Chem. Mater.27 1720 (2015)

    Article  Google Scholar 

  62. W J Yin, J H Yang, J Kang, Y Yan and S H Wei J. Mater. Chem. A3 8926 (2015)

    Article  Google Scholar 

  63. Z Wang, R Yu, C Pan, Z Li, J Yang, F Yi and Z L Wang Nat. Commun.6 8401 (2015)

    Article  ADS  Google Scholar 

  64. C D Bailie, M G Christoforo, J P Mailoa, A R Bowring, E L Unger, W H Nguyen, J Burschka, N Pellet, J Z Lee and M Grätzel Energy Environ. Sci.8 956 (2015)

    Article  Google Scholar 

  65. K E Babu, N Murali, K V Babu, P T Shibeshi and V Veeraiah Presented at the AIP Conference Proceedings (2014)

  66. M Mehl Phys. Rev. B41 10311 (1990)

    Article  ADS  Google Scholar 

  67. S A Dar, S A Khandy, I Islam, D C Gupta, U K Sakalle, V Srivastava and K Parrey Chin. J. Phys.55 1769 (2017)

    Article  ADS  Google Scholar 

  68. S Pugh Lond. Edinb. Dublin Philos. Mag. J. Sci.45 823 (1954)

    Google Scholar 

  69. A Maachou, H Aboura, B Amrani, R Khenata, S Bin Omran and D Varshney Comput. Mater. Sci.50 3123 (2011)

  70. I Johnston Solid State Physics Simulations (Wiley) (1996)

Download references

Acknowledgements

I extend my thanks to Prof. Dr. Eng. Rabah KHENATA, Head of LPQ3M-Laboratory, Faculty of Sciences & Technology, Mascara University, 29000, Algeria. I thank him for helping me, giving guidance and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouabdellah Bouadjemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houari, M., Bouadjemi, B., Haid, S. et al. Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations. Indian J Phys 94, 455–467 (2020). https://doi.org/10.1007/s12648-019-01480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01480-0

Keywords

PACS Nos.

Navigation