Skip to main content
Log in

Combined action of time delay and colored cross-correlated Gaussian colored noises on dynamical characteristics for a FitzHugh–Nagumo neural system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we focus on the investigation of the regime shift of the steady states, the mean first-passage time (MFPT) and the stochastic resonance (SR) for a FitzHugh–Nagumo neural system with time delay perturbed by colored cross-correlated Gaussian colored noises as well as a periodic signal. By means of a series of numerical calculations, our investigation results show that time delay, the multiplicative noise and the additive one can all produce the negative influence on the maintenance of the stability for the neuronal system; while the two self-correlation times of the internal and external noises, the noise correlation strength and its correlation time can always strengthen the stability of the biological system. As for the MFPT for the FHN system, it is observed that during the recovery process from the excited state to the resting one, we should take measures to increases the noise correlation strength, two noise self-correlation times, and reduce time delay along with the noise correlation time so as to sustain the state of excitation for neuronal cells as far as possible. With respect to the SR phenomenon, it is observed that the noise correlation strength and its correlation time, two Gaussian noise correlation times \(\tau_{1}\), \(\tau_{2}\) can all amplify significantly the SR effect, and even stimulate the double-peaked or three-peaked phenomenon; While time delay and the additive noise will always reduce the SR effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. R Benzi, A Sutera, A Vulpiani J. Phys. A 14 453 (1981)

  2. L Gammaitoni, P Hanggi, P Jung, F Marchesoni Rev. Mod. Phys. 70 223 (1998)

  3. W Horsthemke and M Malek-Mansour Z. Phys. B 24 307 (1976)

  4. C V D Broeck, J M R Parrondo and R Toral Phys. Rev. Lett. 73 3395 (1994)

  5. C V D Broeck, J M R Parrondo, R Toral and R Kawai Phys. Rev. E 55 4084 (1997)

  6. J H Li and Z Q Huang Phys. Rev. E 55 3315 (1996)

  7. Y Jia, L Cao and D J Wu Phys. Rev. A 51 3196 (1995)

  8. Y Jia and J R Li Phys. Rev. E 53 5786 (1996).

    Article  ADS  Google Scholar 

  9. L Arnold, W Horsthemke and R Lefever Z. Phys. B 29 367 (1978)

  10. F Castro, A D Sanchez and H S Wio Phys. Rev. Lett. 75 1691 (1995)

  11. S Mangioni, R Deza, H S Wio and R Toral Phys. Rev. Lett. 79 2389 (1997)

  12. A V Soldatov Mod. Phys. Lett. B 7 1253 (1993)

  13. P Jung and P Hanggi Phys. Rev. A 35 4464 (1987).

    Article  ADS  Google Scholar 

  14. W Xu, M L Hao, X D Gu and G D Yang Mod. Phys. Lett. B 28 1450085 (2014)

  15. K K Wang, D C Zong, S H Li Chaos, Solitons and Fractals 91 235 (2016)

  16. K K Wang, D C Zong, Y J Wang and S H Li Euro. Phys. J. B 89 122 (2016)

  17. X Q Luo and S Q Zhu Phys. Rev. E 67 021104 (2003)

  18. L Cao, D J Wu and S Z Ke Phys. Rev. E 52 3228 (1995)

  19. G Y Liang, L Cao and D J Wu Phys. Lett. A 294 190 (2002)

  20. Y F Jin Probab. Engineer. Mech. 41 115 (2015)

  21. S Xiao, Y Jin Nonlinear Dyn. 90 2069 (2017)

  22. A L Hodgkin and A F Huxley J. Physiol. 117 500 (1952)

  23. K Wiesenfeld et al Phys. Rev. Lett. 72 2125 (1994).

  24. H C Tuckwell, R Rodriguez and F Y Wan Neural. Comput. 15 143 (2003)

  25. J A Acebron, A R Bulsara and W J Rappel Phys. Rev. E 69 026202 (2004)

  26. H Kitajima and J Kurths Chaos 15 023704 (2005)

  27. R Fitzhugh, J Gen. Physiol. 43 867 (1960)

  28. T Alarcon, A P Madrid and J M Rubi Phys. Rev. E 57 4979 (1998)

  29. J J Collins, C C Chow and T T Imho Phys. Rev. E 52 R3321 (1995)

  30. Q L Han, T Yang, C H Zeng, H Wang, Z Q Liu, Y C Fu, C Zhang, D Tian Physica A 408 96 (2014)

  31. M A Fuentes, R Toral and H S Wio Physica A 295 114 (2001)

  32. M A Fuentes et al. Fluct. Noise. Lett. 3 L365 (2003)

  33. D Wu and S Q Zhu Phys. Lett. A 363 202 (2007)

  34. Y F Guo, B Xi, F Wei and J G Tan Int. J. Mod. Phys. B 31 1750264 (2017)

  35. X B Li, L J Ning Indian J. Phys. 90 1–8 (2015)

  36. X W Li, L J Ning Indian J. Phys. 89 189 (2014)

  37. J K Zeng, C H Zeng, Q S Xie, L Guan, X H Dong, F Z Yang Physica A 462 1273 (2016)

  38. E A Novikov, Z Èksp Sov. Phys. JEPT 20 1290 (1965)

  39. R F Fox Phys. Rev. A 34 4525 (1986)

  40. J J Collins, C C Chow and T T Imhoff Phys. Rev. E 52 R3321–R3324 (1995)

  41. T Alarcón, A Pérez-Madrid and J M Rubí Phys. Rev. E 57 4979–4985 (1998)

  42. F Chillá, M Rastello, S Chaumat and B Castaing Eur. Phys. J. B 40 273–281 (2004)

  43. B Spagnolo, A A Dubkov, A L Pankratov, etal Acta Phys. Pol. B 38 1925–1950 (2007)

  44. B Spagnolo, D Valenti, C.Guarcello etal Chaos, Solitons & Fractals 81 412–424 (2015)

  45. D Valenti, L Magazzù, P Caldara, and B Spagnolo Phys. Rev. B 91, 235412 (2015)

  46. R N Mantegna, B Spagnolo Nuovo Cimento 17 873–881 (1995)

  47. D Valenti, L Schimansky-Geier, X Sailer, B Spagnolo Eur. Phys. J. B 50 199–203 (2006)

  48. B Spagnolo, A La Barbera Physica A 315 114–124 (2002)

  49. R N Mantegna, B Spagnolo, and M Trapanese Phys. Rev. E 63 011101 (2000)

  50. G Falci, A La Cognata, M Berritta, A D’Arrigo, E Paladino, B Spagnolo Phys. Rev. B 87 214515 (2013)

  51. B Spagnolo, D Valenti Int. J. Bifurcat. Chaos 18 2775–2786 (2008)

  52. G Denaro, D Valenti, A La Cognata, B Spagnolo etal, Ecol. Complexity 13 21–34 (2013)

  53. N Pizzolato, A Fiasconaro, D Persano Adorno, B Spagnolo Phys. Biology 7 034001 (2010)

  54. A Giuffrida, D Valenti, G Ziino, B Spagnolo etal, Eur. Food Research Tech. 228 767–775 (2009)

  55. G Denaro, D Valenti, B Spagnolo, G Basilone etal, Plos One 8 e66765 (2013)

  56. A A Dubkov, B Spagnolo Eur. Phys. J B 65 361–367 (2008)

  57. B Spagnolo, C Guarcello, L Magazzu, A Carollo etal, Entropy 19 20 (2017)

  58. D Q Guo, M Perc, T J Liu, D Z Yao Europhys. Letts. 124 50001 (2018)

  59. Y Li, Z Wei, W Zhang, M Perc, R Repnik Appl. Math. Comput. 354 180–188 (2019)

  60. C B Gan, M Perc, Q Y Wang Chin. Phys. B 19 040508 (2010)

  61. H A Kramers Physica 7 284 (1940)

  62. B Spagnolo, A A Dubkov, N V Agudov Eur. Phys. J B 40 273–281 (2004)

  63. R Mantegna, B Spagnolo Int. J. Bifurcat. Chaos 8 783–790 (1998)

  64. C Yang, J Yang, D Zhou, et al Philos. T. R. Soc A 379(2192): 20200239 (2021)

Download references

Funding

Project is supported by the National Natural Science Foundation of China (Grant Nos. 61773012, 61371114), Six Talent Peaks Foundation Funded Project of Jiangsu Province (Grant No. JY-082), Jiangsu Provincial “Qing-Lan Engineering” Foundation Funded Project, the Jiangsu Provincial Key Laboratory of Networked Collective Intelligence under (Grant No. BM2017002), China Postdoctoral Science Foundation Funded Project (Grant No. 2016M591737), and Doctoral Research Startup Project of Jiangsu University of Science and Technology, China (Grant No. 1052931704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Kang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients of the modified potential \(U(x)\) are listed as follows:

\(d = 1 + (1 + a\beta )\tau \cdot \left\{ {(a - 2v_{2} )(1 - v_{2} ) - v_{2} (a - v_{2} ) + \frac{b}{\gamma }} \right\}\),

\(d_{1,2} = 1 + (1 + a\beta )\tau_{1,2} \cdot \left\{ {(a - 2v_{2} )(1 - v_{2} ) - v_{2} (a - v_{2} ) + \frac{b}{\gamma }} \right\}\),

$$ \begin{aligned} A_{1} &= - \frac{1}{2}\frac{{d^{2} \lambda^{2} d_{1}^{2} }}{1 + a\beta } + \frac{1}{2}\frac{{d_{2} dd_{1} a\lambda \sqrt {QM} \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} - \frac{1}{2}\frac{{d_{2}^{2} d\lambda^{2} d_{1}^{2} a}}{1 + a\beta } \hfill \\ &\quad + \frac{1}{2}\frac{{d_{2} d^{3} d_{1}^{{}} }}{1 + a\beta } + \frac{1}{2}\frac{{d_{2}^{{}} d^{3} d_{1}^{{}} a}}{1 + a\beta } - \frac{1}{2}\frac{{d_{2}^{2} d\lambda^{2} d_{1}^{2} }}{1 + a\beta } - \frac{1}{2}\frac{{d_{2} dd_{1} \lambda \sqrt {QM} \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} \hfill \\ &\quad + \frac{1}{2}\frac{{d_{2}^{2} d^{3} d_{1}^{{}} }}{1 + a\beta } - \frac{1}{2}\frac{{d_{2}^{2} d\lambda d_{1}^{2} a}}{1 + a\beta } - \frac{1}{2}\frac{{d_{2}^{2} dd_{1}^{2} \lambda \sqrt {QM} \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} \hfill \\ &\quad + \frac{1}{2}\frac{{d_{2}^{{}} d^{3} d_{1}^{2} a}}{1 + a\beta } + \frac{1}{2}\frac{{d_{2}^{{}} d^{2} d_{1}^{{}} \lambda \sqrt {QM} \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} \hfill \\ &\quad+ \frac{1}{2}\frac{{d_{2}^{2} d^{2} d_{1}^{2} a\lambda }}{1 + a\beta } + \frac{1}{2}\frac{{d_{2}^{2} d^{2} d_{1}^{{}} \lambda a\sqrt {QM} \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} - \frac{1}{2}\frac{{d_{2}^{{}} d^{2} \lambda^{3} d_{1}^{{}} }}{1 + a\beta } \hfill \\ &\quad+ \frac{1}{2}\frac{{d_{2}^{{}} d^{2} \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} A\cos (\omega t)}}{(1 + a\beta )M} - \frac{1}{2}\frac{{d_{2}^{{}} d^{2} \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} A\cos (\omega t)}}{(1 + a\beta )QM} \hfill \\ \end{aligned} $$
$$ \begin{aligned} A_{2} &= \frac{1}{2}d^{2} + \frac{1}{4}\frac{{db\sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} + \frac{1}{4}\frac{{da\sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} \hfill \\ &\quad - \frac{1}{4}\frac{{d_{1} \lambda \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} \sqrt {QM} }}{{(1 + a\beta )Q^{2} M}} + \frac{1}{4}\frac{{d_{2} \lambda^{2} d_{1}^{2} }}{(1 + a\beta )Q} - \frac{1}{4}\frac{{d^{2} d_{1}^{{}} }}{(1 + a\beta )Q} - \frac{1}{2}\frac{{d_{2} \lambda^{2} d_{1}^{{}} }}{(1 + a\beta )QM} \hfill \\ \end{aligned} $$
$$ \begin{aligned} A_{3} &= \frac{1}{2}d^{2} + \frac{1}{4}\frac{{d_{2} \lambda^{2} d_{1}^{2} }}{(1 + a\beta )Q} - \frac{1}{4}\frac{{dd_{1}^{2} }}{(1 + a\beta )Q} - \frac{1}{4}\frac{{db\sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} }}{(1 + a\beta )QM} \hfill \\ &\quad + \frac{1}{4}\frac{{d_{1} \lambda \sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} \sqrt {QM} }}{{(1 + a\beta )Q^{2} M}} - \frac{1}{2}\frac{{d_{2} \lambda^{2} d_{1}^{{}} }}{(1 + a\beta )QM} - \frac{1}{4}\frac{{d\sqrt {QMd_{1} d_{2} (\lambda^{2} d_{1} d_{2} - d^{2} )} a}}{(1 + a\beta )QM} \hfill \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KK., Ye, H., Wang, YJ. et al. Combined action of time delay and colored cross-correlated Gaussian colored noises on dynamical characteristics for a FitzHugh–Nagumo neural system. Indian J Phys 96, 1943–1961 (2022). https://doi.org/10.1007/s12648-021-02186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02186-y

Keywords

Navigation