Skip to main content
Log in

Mathematical study of transport phenomena of blood nanofluid in a diseased artery subject to catheterization

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Cardiac catheterization is an invasive diagnostic procedure for treating the cardiovascular diseases. This paper aims to understand the transport phenomena of blood nanofluid through a flexible arterial domain, which has stenosis/dilation with the catheter outer surface layered with nanoparticles. Blood is considered as a micro-polar fluid, governed by nonlinear equations, which are then solved by using the homotopy perturbation method. We consider the flexible nature of the arterial wall as a function of time due to the heart’s pumping action. Different slip velocities with the Darcy effects in the constricted domain’s abnormal segments represent the dysfunction of a blood vessel. In this paper, we explore the effects of the various fluid parameters and the embedded geometrical parameters on physiological characteristics. We observe that the radial velocity increases with the increasing value of Gr and Br. However, impedance has shown the opposite pattern in the dilation segment. Also, we understand the helical flow distribution in the abnormal segments of the considered blood vessel. These findings explain that the study of nanofluid could be an assuring therapeutic approach against arterial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. World health statistics 2016: monitoring health for the SDGs sustainable development goalsWorld Health Organization (2016)

  2. Y C Fung Adv. Appl. Mech. 11 65 (1971)

  3. Y I Cho, L H Back, V Crawford and R F Cuffel J. Biomech. 16 933 (1983)

    Article  Google Scholar 

  4. D Basmadjian J. Biomech. 19 837 (1986)

  5. S Chakravarty and P K Mandal Int. J. Non-Linear Mech. 35 779 (2000)

    Article  ADS  Google Scholar 

  6. G W Schmid-Schönbein, S Usami, R Skalak and S Chien Microvasc. Res. 19 45 (1980)

    Article  Google Scholar 

  7. A C Eringen Int. J. Eng. Sci. 2 205 (1964)

  8. Kh S Mekheimer and MA El Kot Acta Mech. Sin. 24 637 (2008)

  9. Md A Ikbal, S Chakravarty and P K Mandal Comput. Math. Appl. 58 1328 (2009)

  10. B Pincombe and J Mazumdar Mathematical and Computer Modelling 25 57 (1997)

    Article  Google Scholar 

  11. R Ellahi, A Riaz and S Nadeem Indian J. Phys. 87 1275 (2013)

  12. K S Mekheimer and M A E Kot Int. J. Non-Linear Mech. 47 927 (2012)

    Article  ADS  Google Scholar 

  13. J D Kratz, A Chaddha, S Bhattacharjee and N S Goonewardena Cardiovasc. Drugs Therapy 30 33 (2016)

  14. W Jiang, D Rutherford, T Vuong and H Liu Bioactive Mater. 2 185 (2017)

  15. D Wen, G Lin, S Vafaei and K Zhang Particuology 7 141 (2009)

  16. M Hatami, J Hatami and D D Ganji Comput. Methods Programs Biomed. 113 632 (2014)

  17. O Ghaffarpas Appl. Math. Model. 40 9165 (2016)

  18. Y Wang, N Ali, T Hayat and M Oberlack Appl. Math. Model. 35 3737 (2011)

  19. El Thanaa Eur. Phys. J. Spec. Topics 228 2695 (2019)

  20. Kh S Mekheimer, El Thanaa, MA El Kot and F Alghamdi Phys. Essays 29 272 (2016)

  21. Kh S Mekheimer, MS Mohamed, and El Thanaa Int. J. Pure Appl. Math. 107 201 (2016)

  22. Ali H. Nayfeh Introduction to Perturbation Techniques (Virginia: WILEY-VCH) (2004)

  23. J R Stanley Singular Perturbation Theory (US: Springer) (2006).

  24. S J Liao Int. J. Non-Linear Mech. 30 371 (1995)

  25. J H He Comput. Methods Appl. Mech. Eng. 187 257 (1999)

  26. Th Elnaqeeb, N A Shah and K S Mekheimer BioNanoScience 9 245 (2019)

  27. R Ellahi, S U Rahman, S Nadeem and N S Akbar Appl. Nanosci. 4 919 (2014)

  28. JVR Reddy, D Srikanth and S K Das Eur. Phys. J. Plus 132 365 (2017)

  29. B Pincombe, J Mazumdar and I Hamilton-Craig Med. Biol. Eng. Comput. 37 595 (1999)

  30. P K Mandal Int. J. Non-Linear Mech. 40 151 (2005)

  31. R Fahraeus and L Torsten Am. J. Physiology-Leg. Content 96 562 (1931)

  32. G K Batchelor J. Fluid Mech. 83 97 (1977)

  33. J Buongiorno J. Heat Transf. 128 240 (2006)

  34. KM Surabhi, JVR Reddy and D Srikanth Sādhanā 43 210 (2018)

  35. A C Burton Acad. Med. 40 217 (1965)

  36. P Brunn Rheol. Acta 14 1039 (1975)

  37. G S Beavers and D D Joseph J. Fluid Mech. 30 197 (1967)

  38. B Jafar and H Aminikhah Comput. Math. Appl. 58 2221 (2009)

  39. T Elnaqeeb, K S Mekheimer and F Alghamdi Math. Biosci. 282 135 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Srikanth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, S., Srikanth, D. Mathematical study of transport phenomena of blood nanofluid in a diseased artery subject to catheterization. Indian J Phys 96, 1929–1942 (2022). https://doi.org/10.1007/s12648-021-02166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02166-2

Keywords

Navigation