Skip to main content

Advertisement

Log in

Temperature and energetic disorder dependence of Seebeck coefficient in organic materials

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In clean energy sources, thermoelectric (TE) properties of organic materials have attracted much attention for their potential applications. In present work, using master equation method and considering the influence of temperatures on hopping rates as well as on-site energies, we investigated the characteristics of charge carrier TE transport in the organic material. In our model, the Seebeck coefficient of the organic material under different temperatures, reorganization energies and energetic disorders have been analyzed. Especially, the Seebeck coefficient exhibited different performances as the reorganization energy changes. The results will be helpful to understand TE properties of the organic material and make use of heat energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y Y Wu, X L Zhu, H Y Yang, Z G Wang, Y H Li and B T Wang Chin. Phys. B 29 087202 (2020)

    Article  ADS  Google Scholar 

  2. K Harada, M Sumino, C Adachi, S Tanaka and K Miyazaki Appl. Phys. Lett. 96 253 (2010)

    Article  Google Scholar 

  3. Z L Yu, Y Q Zhao, B Liu and M Q Cai Appl. Surf. Sci. 497 143787 (2019)

    Article  Google Scholar 

  4. G H Kim, L Shao, K Zhang and K P Pipe Nat. Mater. 12 719 (2013)

    Article  Google Scholar 

  5. L Xie, W Song, J F Ge, B C Tang, X L Zhang, T Wu and Z Y Ge Nano Energy 82 105770 (2021)

    Article  Google Scholar 

  6. J E Mink, R M Qaisi, B E Logan and M M Hussain NPG Asia Mater 6 e89 (2014)

    Article  Google Scholar 

  7. R Shehroz, A Asghar and S Iqbal Energy Harvesting Devices. Advances in Hybrid Conducting Polymer Technology. (Springer, Cham) pp 101–124 (2021)

  8. L M Cowen, J Atoyo, M J Carnie, D Baran and B C Schroeder J. Solid State Sci. Technol. 6 N3080 (2017)

    Article  Google Scholar 

  9. S Peng, D Wang, J Lu, M He, C Xu, Y Li and S Zhu J. Polym. Environ. 25 1208 (2017)

    Article  Google Scholar 

  10. Q Zhang, Y Sun, W Xu and D Zhu Adv. Mater. 26 6829 (2014)

    Article  Google Scholar 

  11. D Wang, L Tang, M Long and Z Shuai J. Chem. Phys. 131 224704 (2009)

    Article  ADS  Google Scholar 

  12. K Zhang, Y Zhang and S Wang Sci. Rep. 3 3448 (2013)

    Article  ADS  Google Scholar 

  13. Y M Sun, C A Di, W Xu and D B Zhu Adv. Electron. Mater. 1800825 (2019)

  14. S Lee, S Kim, A Pathak, A Tripathi, T Qiao, Y Lee, H Lee and H Y Woo Macromol. Res. 28 531 (2020)

    Article  Google Scholar 

  15. Y H Zhang, Y J Heo, M Park and S J Park Polymers 11 167 (2019)

    Article  Google Scholar 

  16. R Sánchez and M Büttiker Europhys. Lett. 100 47008 (2012)

    Article  ADS  Google Scholar 

  17. C Yu, K Choi, L Yin and J C Grunlan ACS Nano 5 7885 (2011)

    Article  Google Scholar 

  18. M Scholdt et al. J. Electron. Mater. 39 1589 (2010)

    Article  ADS  Google Scholar 

  19. Z A Durrani J. Appl. Phys. 115 094508 (2014)

    Article  ADS  Google Scholar 

  20. S H Tan, L M Tang, Z X Xie, C N Pan and K Q Chen Carbon 65 181 (2013)

    Article  Google Scholar 

  21. D Mendels and N Tessler J. Phys. Chem. Lett. 5 3247 (2014)

    Article  Google Scholar 

  22. H J Xue, T Q Lü, H C Zhang, H T Yin, L Cui and Z L He Chinese Phys. B 21 037201 (2012)

    Article  ADS  Google Scholar 

  23. B Szukiewicz and K Wysokiński Acta Phys. Pol. A 126 1159 (2014)

    Article  ADS  Google Scholar 

  24. C J Yao, H L Zhang and Q C Zhang Polymers 11 107 (2019)

    Article  Google Scholar 

  25. X K Chen, J Liu, D Du, Z X Xie and K Q Chen J. Phys.: Condens. Matter 30 155702 (2018)

    ADS  Google Scholar 

  26. X F Peng, X Zhou, S H Tan, X J Wang, L Q Chen and K Q Chen Carbon 113 334 (2017)

    Article  Google Scholar 

  27. D Wu et al. Sci. China Phys. Mech. Astron. 63 276811 (2020)

    Article  ADS  Google Scholar 

  28. Y J Zeng, D Wu, X H Cao, W X Zhou, L M Tang and K Q Chen Adv. Funct. Mater. 30 1903873 (2019)

    Article  Google Scholar 

  29. L J Tang, X T Zhang, B Y Yan, L Liu, C H Wang, Q Fu and F J Yang Mod. Phys. Lett. B 33 1950215 (2019)

    Article  ADS  Google Scholar 

  30. J J M van der Holst Three-Dimensional Modeling of Charge Transport, Injection and Recombination in Organic Light-Emitting Diodes. (Eindhoven: Eindhoven University of Technology) (2010)

    Google Scholar 

  31. R A Marcus Rev. Mod. Phys. 65 599 (1993)

    Article  ADS  Google Scholar 

  32. Z G Yu, D L Smith, A Saxena, R L Martin and A R Bishop Phys. Rev. Lett. 84 721 (2000)

    Article  ADS  Google Scholar 

  33. Z G Yu, D L Smith, A Saxena, R L Martin and A R Bishop Phys. Rev. B 63 085202 (2001)

    Article  ADS  Google Scholar 

  34. W F Pasveer et al. Phys. Rev. Lett. 94 206601 (2005)

    Article  ADS  Google Scholar 

  35. F J Yang, W Qin and S J Xie J. Chem. Phys. 140 144110 (2014)

    Article  ADS  Google Scholar 

  36. F J Yang and S J Xie Chinese Phys. B 23 097306 (2014)

    Article  ADS  Google Scholar 

  37. S Kera et al. J. Phys. Chem. C 117 22428 (2013)

    Article  Google Scholar 

  38. A Fuchs, T Steinbrecher, M S Mommer, Y Nagata, M Elstner and C Lennartz Phys. Chem. Chem. Phys. 14 4259 (2012)

    Article  Google Scholar 

  39. Z G Shuai, H Geng, W Xu, Y Liao and J M Andre Chem. Soc. Rev. 43 2662 (2014)

    Article  Google Scholar 

  40. L J Wang, G J Nan, X D Yang, Q Peng, Q K Li and Z G Shuai Chem. Soc. Rev. 39 423 (2010)

    Article  Google Scholar 

  41. N D Lu, L Li and M Liu Org. Electron. 16 113 (2015)

    Article  Google Scholar 

  42. J B Niu, N D Lu, L Li and M Liu Phys. Lett. A 378 3579 (2014)

    Article  ADS  Google Scholar 

  43. N D Lu, L Li and M Liu Phys. Rev. B 91 195205 (2015)

    Article  ADS  Google Scholar 

  44. N D Lu, L Li and M Liu Phys. Chem. Chem. Phys. 18 19503 (2016)

    Article  Google Scholar 

  45. Y Roichman and N Tessler Appl. Phys. Lett. 80 1948 (2002)

    Article  ADS  Google Scholar 

  46. O Bubnova, Z U Khan, A Malti, S Braun, M Fahlman, M Berggren and X Crispin Nat. Mater. 10 429 (2011)

    Article  ADS  Google Scholar 

  47. Y W Park Synth. Met. 45 173 (1991)

    Article  Google Scholar 

  48. L Xu, Y C Liu, M P Garrett, B B Chen and B Hu J. Phys. Chem. C 117 10264 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No.11747056) and Research on Coordinated Development of Rural E-commerce and Logistics under Rural Revitalization Strategy (Grant No. QNSKZ201901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujiang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Zhang, X., Liu, L. et al. Temperature and energetic disorder dependence of Seebeck coefficient in organic materials. Indian J Phys 96, 1985–1989 (2022). https://doi.org/10.1007/s12648-021-02149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02149-3

Keywords

Navigation