Skip to main content
Log in

Fun with colours

The standard model with two-colour QCD has radically different long-distance physics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In our world, the standard model of particle physics contains within it the fairly intractable theory called QCD. A toy version with two colours is often studied as a model confining and chiral symmetry breaking field theory. Here, we investigate the cascade of changes at various distance scales if we make this change within the standard model. It is possible to limit the changes at the hadronic scale. However, the minor changes that occur actually cascade down to the far infrared, into nuclear and atomic physics, and chemistry. Through this, it also possibly affects the evolution of stars and galaxies. We remark on this unexpected sensitivity of the universe to physics at the scale of quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This can change if the hierarchy of scales in the standard model is modified drastically [2,3,4,5], which we do not plan to do.

  2. We follow the metric and other conventions of Weinberg [1].

  3. Both the intermediate distance regime, where multi-meson exchanges and the tower of higher spin mesons have to be accounted for, and the chiral limit, where intermediate states with infinite number of pions are not suppressed by energy considerations, require a more detailed analysis. If nuclear physics and bulk nuclear matter in QCD\(_2\) were of greater interest, these effects would have to be computed.

  4. We adapt the standard notation for the nucleus of element X as \({}^B_ZX\) and drop the index Z, since it is always B/2.

  5. It is interesting that specifically for \(N_c=2\) it is easy to write terms in SMEFT which violate B and \(B-L\), through dimension 6 operators. This could allow a different path for baryon asymmetry to be generated.

References

  1. S Weinberg, The Quantum Theory of Fields Vol II (Cambridge : Cambridge University Press) (1996)

    Book  Google Scholar 

  2. S Weinberg, Phys. Rev. D 13 974 (1976)

    Article  ADS  Google Scholar 

  3. L Susskind, Phys. Rev. D 20 2619 (1979)

    Article  ADS  Google Scholar 

  4. C Quigg and R. Shrock, Phys. Rev. D 79 096002 (2009)

    Article  ADS  Google Scholar 

  5. N Lohitsiri and D Tong, Sci. Post Phys. 7(5) 059 (2019)

  6. J B Kogut, M A Stephanov and D Toublan, Phys. Lett. B 464 183 (1999) https://doi.org/10.1016/S0370-2693(99)00971-5

  7. J B Kogut, D K Sinclair, S J Hands and S E Morrison, Phys. Rev. D 64 094505 (2001)

    Article  ADS  Google Scholar 

  8. C Ratti and W Weise, Phys. Rev. D 70 54013 (2004)

    Article  ADS  Google Scholar 

  9. G F Sun, L He and P Zhuang, Phys. Rev. D 75 096004 (2007)

  10. T Brauner, K Fukushima and Y Hidaka, Phys. Rev. D 80 074035 (2009) (Erratum: [Phys. Rev. D 81 (2010) 119904])

  11. S Hands, T J Hollowood and J C Myers, JHEP 12 057 (2010)

    Article  ADS  Google Scholar 

  12. R Lewis, C Pica and F Sannino, Phys. Rev. D 85 014504 (2012)

    Article  ADS  Google Scholar 

  13. S Cotter, P Giudice, S Hands and J I Skullerud, Phys. Rev. D 87 034507 (2013)

    Article  ADS  Google Scholar 

  14. S Hands, S Cotter, P Giudice and J I Skullerud, J. Phys. Conf. Ser. 432 012020 (2013)

    Article  Google Scholar 

  15. T Makiyama et al Phys. Rev. D 93 014505 (2016)

    Article  ADS  Google Scholar 

  16. V V Braguta, E-M Ilgenfritz, A Y Kotov, A V Molochkov and A A Nikolaev, Phys. Rev. D 94 114510 (2016)

    Article  ADS  Google Scholar 

  17. J Chao, Chin. Phys. C 44 034108 (2020)

    Article  ADS  Google Scholar 

  18. A Haber, Multicomponent Superfluids and Superconductors in Dense Nuclear and Quark Matter

  19. T G Khunjua, K G Klimenko and R N Zhokhov, JHEP 06 148 (2020)

    Article  ADS  Google Scholar 

  20. J Swift, Travels into Several Remote Nations of the World. (London : Benjamin Motte) (1726)

  21. E A Abbott, Flatland: A Romance of Many Dimensions (London : Seeley and Co) (1884)

    MATH  Google Scholar 

  22. I Asimov, The Gods Themselves (New York City : Knopf Doubleday) (1972)

    Google Scholar 

  23. G Egan, Incandescence (London : Gollancz) (2008)

  24. E Witten, Phys. Lett. B 117 324 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. R Shrock, Phys. Rev. D 53 6465 (1996)

  26. A Abbas, Phys. Lett. B 238 344 (1990)

    Article  ADS  Google Scholar 

  27. J M Gerard and T Lahna, Phys. Lett. B 356 381 (1995). https://doi.org/10.1016/0370-2693(95)00811-X

  28. C K Chow and T M Yan, Phys. Rev. D53 5105 (1996)

  29. E Witten, Nucl. Phys. B 160 57 (1979)

    Article  ADS  Google Scholar 

  30. J Stern, Pauli-Gürsey Symmetry in Gauge Theories. preprint IPNO-TH-83-34

  31. M E Peskin, Nucl. Phys. B 175 197 (1980)

    Article  ADS  Google Scholar 

  32. D Weingarten, Phys. Rev. Lett.51 1830 (1983)

    Article  ADS  Google Scholar 

  33. J B Kogut and M A Stephanov, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 21 1 (2004)

    Google Scholar 

  34. J F Donoghue, E Golowich and B R Holstein, Dynamics of the standard model. Chapter X, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 2 (Cambridge : Cambridge University Press) (1992)

  35. F Osterfeld, Rev. Mod. Phys. 64 491 (1992)

    Article  ADS  Google Scholar 

  36. T Becher and H Leutwyler, Eur. Phys. J. C 9 643 (1999)

    Article  ADS  Google Scholar 

  37. M V Zhukov, B V Danilin, D V Fedorov, J M Bang, I J Thompson and J S Vaagen, Phys. Rept. 231 151 (1993)

    Article  ADS  Google Scholar 

  38. V Efimov, Phys. Lett. B 33, 564 (1970)

    Article  ADS  Google Scholar 

  39. E Braaten, H W Hammer, Phys. Rept. 428 259 (2006)

    Article  ADS  Google Scholar 

  40. G Gamow, Proc. Roy. Soc. Lond. A 126 632 (1930)

    Article  ADS  Google Scholar 

  41. S Weinberg, Phys. Rev. Lett. 59 2607 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support of the Department of Atomic Energy, Government of India, under Project Identification No. RTI 4002. We would like to thank Jean-Paul Blaizot, Robert Shrock, and David Tong for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourendu Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Gupta, S. & Sharma, R. Fun with colours. Indian J Phys 95, 1623–1630 (2021). https://doi.org/10.1007/s12648-021-02126-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02126-w

Keywords

Navigation