Skip to main content
Log in

Invariant solutions of Einstein field equations in pure radiation fields

  • Original Scientific Research
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The exact static accelerating solutions of Einstein’s equations in the non-comoving pure radiation fields, with an indefinite non-degenerate stationary metric in cylindrical coordinates, are obtained. The considered space-time is of Petrov type I and is not conformally flat. Moreover, the classical symmetry method is used for symmetry reduction and finding the solutions in terms of hyperbolic functions. The conservation laws are found by using the multiplier approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P J Olver Applications of Lie Groups to Differential Equations (New York: Springer) P R Halmos Ch 3, Sec 1, p 188 (1986)

  2. G W Bluman and S C Anco Symmetries and Integration Methods for Differential Equations (New York: Springer) (vol. 154) S S Antman Ch 4, Sec 3, p 330 (2002)

  3. M Kumar and D Tanwar Comput. Math. with Appl. 76 2535 (2018)

    Article  MathSciNet  Google Scholar 

  4. D Jyoti, S Kumar and R K Gupta Eur. Phys. J. Plus 135 604 (2020)

  5. D Jyoti and S Kumar Chin. J. Phys. 68 735 (2020)

    Article  Google Scholar 

  6. D Jyoti and S Kumar Eur. Phys. J. Plus 135 762 (2020)

    Article  Google Scholar 

  7. S Jamal Mod. Phys. Lett. A 35 2050068 (2020)

  8. S Jamal Int. J. Mod. Phys. D 29 2050046 (2020)

  9. N Dimakis, A Giacomini, S Jamal, G Leon and A Paliathanasis Phys. Rev. D 95 064031 (2017)

  10. H Stephani D Kramer M MacCallum C Hoenselaers and E Herlt Exact Solutions of Einstein’s Field Equations (New York: Cambridge University Press) (second ed.) P V Landshoff Ch 1, Sec 1, p 1 (2003)

  11. S P Puri General Theory of Relativity (India: Pearson) Ch 3, Sec 1, p 111 (2013)

  12. T Lewis Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 136 176 (1932)

  13. T Makino arXiv preprint arXiv:2008.13179 (2020)

  14. M F A da Silva, L Herrera, F M Paiva and N O Santos Gen. Relativ. Gravit. 27 859 (1995)

  15. M F A da Silva, L Herrera, F M Paiva and N O Santos Class. Quantum Grav. 12 111 (1995)

  16. A M Wazwaz Math. Comput. Modelling 40 499 (2004)

  17. A Biswas Nonlinear Dyn. 58 345 (2009)

  18. S Kumar, Pratibha and Y K Gupta Int. J. Mod. Phys. A 25 3993 (2010)

  19. M Kumar and Y K Gupta Pramana-Journal of Physics 74 883 (2010)

    Article  ADS  Google Scholar 

  20. M K Jasim and Z John Appl. Math. Comput. 253 242 (2015)

    MathSciNet  Google Scholar 

  21. K N Singh, F Rahaman, N Pradhan and N Pant Indian J. Phys. 1 (2020) https://doi.org/10.1007/s12648-020-01749-9

  22. B O’Neill Semi-Riemannian Geometry (London: Academic Press Limited) S Eilenberg Ch 3, Sec 6, p 74 (1983)

  23. U G\(\ddot{o}\)nna and D Kramer Class. Quantum Grav. 15 215 (1998)

  24. A M Grundland and J Tafel Class. Quantum Grav. 10 2337 (1993)

    Article  ADS  Google Scholar 

  25. L Kaur and R K Gupta Maejo Int. J. Sci. Technol. 7 133 (2013)

    Google Scholar 

  26. S Kumar Nonlinear Dyn. 85 1275 (2016)

  27. S Kumar Nonlinear Dyn. 87 1153 (2017)

  28. A H Bokhari, F D Zaman, R Narain and A H Kara Indian J Phys. 87 717 (2013)

    Article  Google Scholar 

  29. A H Kara and F M Mahomed J. Nonlinear Math. Phys. 9 60 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  30. S C Anco and G W Bluman Eur. J. Appl. Math. 13 545 (2002)

    Article  Google Scholar 

  31. S C Anco and G W Bluman Eur. J. Appl. Math. 13 567 (2002)

    Article  Google Scholar 

  32. N H Ibragimov J. Math. Anal. Appl. 333 311 (2007)

  33. R Naz, I Naeem and M D Khan Math. Probl. Eng. 2013 897912 (2013)

  34. R Naz J. Appl. Math. 2012 871253 (2012)

Download references

Acknowledgements

The second author (Divya Jyoti) is very much thankful to CSIR for providing financial assistance in terms of JRF fellowship via letter with Sr. No. 1061841352 and Ref. No. 17/06/2018(i)EU-V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Jyoti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jyoti, D. Invariant solutions of Einstein field equations in pure radiation fields. Indian J Phys 96, 1283–1288 (2022). https://doi.org/10.1007/s12648-021-02034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02034-z

Keywords

Navigation