Skip to main content

Advertisement

Log in

Analysis of equations of state as applied to thermoelastic properties of C60 crystalline solid

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present paper, an attempt has been made for the comparative study of different equations of state and investigated the thermodynamic and thermoelastic properties for C60 crystalline solid. We have fitted the experimental compression curve to the modified Tait’s equation of state. Using the best fit values of B0 and B0′, we have computed the compression behavior of C60 crystalline solid in the face-centered-cubic structure in the pressure range of 0–11 GPa at room temperature. Tait’s EOS has further extended to analyze the temperature dependence of thermal expansivity and bulk modulus for C60 crystalline solid. We have attempted for theoretical prediction of pressure-dependent Grüneisen parameter and isothermal bulk modulus for C60 crystalline solid at reference temperature. The calculated values of thermal expansion are in good agreement with the available theoretical and experimental results, which reveals the validity of present work. The results of the coefficient of thermal expansion achieved in the present study are found to display good agreement with other available results. The present relationship of thermal expansivity may be used to understand the temperature behavior of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P Alivisatos, P F Barbara, A W Castleman and J Chang Adv. Mater. 10 1297 (1998)

    Google Scholar 

  2. H W Kroto, J R Heath, S C O’Brien, R F Curl and R E Smalley Nature 318 162 (1985)

    Google Scholar 

  3. P A Heiney, J E Fischer, A R McGhie, W J Romanow, A M Denenstein, J P McCauley Jr, A B Smith, and D E Cox Phys. Rev. Lett. 66 2911 (1991)

    Article  ADS  Google Scholar 

  4. G A Samara, J E Schirber, B Morosin, L V Hansen, D Loy, and A P Sylwester Phys. Rev. Lett. 67 3136 (1991)

    Article  ADS  Google Scholar 

  5. J E Fischer, P A Heiney, A R Mcghie, W J Romanow, A M Denenstein, J P Mccauley Jr, and A B Smith III Science 252 1288 (1991)

  6. G A Samara, L V Hansen, R A Anssink, B Morosin, J E Shirber and D Loy Phys. Rev. B 47 4756 (1993)

    Article  Google Scholar 

  7. S J Duclos, K Brister, R C Haddon, A R Kortan and F A Theil Nature 351 380 (1991)

    Google Scholar 

  8. U Sharma, V Joshi and M Kumar Indian J. Pure Appl. Phys. 50 245 (2012)

    Google Scholar 

  9. T Horikawa, T Kinoshita, K Suito and A Onodera Solid State Commun. 114 121 (2000)

    Article  ADS  Google Scholar 

  10. S Gaurav, B S Sharma, S B Sharma and S C Upadhayay Physica B 322 328 (2002)

  11. G R Patel, N A Thakar and T C Pandya Indian J. Phys. 92 985 (2018)

  12. T H Kwon and S C Kim Physica B 205 331 (1995)

    Article  ADS  Google Scholar 

  13. T H Kwon Solid State Commun. 95 255 (1995)

  14. M Kumar Physica B 212 391 (1995)

  15. O L Anderson, D G Isaak and H Oda Rev. Geophys. 30 57 (1992)

    Article  Google Scholar 

  16. J R MacDonald Rev. Mod. Phys. 41 316 (1969)

  17. P Vinet, J R Smith and J H Rose J. Phys. C 19 L467 (1987)

    Google Scholar 

  18. J P Poirier and A Tarantola Phys. Earth Planet. Inter. 109 1 (1998)

    Article  ADS  Google Scholar 

  19. I Suzuki J. Phys. Earth 23 145 (1975)

  20. F Birch J. GeoPhys. Res. 83 1257 (1978)

  21. O L Anderson Equation of States of Solids for Geophysics and Ceramics Sciences (New York: Oxford University Press) (1995)

    Google Scholar 

  22. Q Liua, and L Rong Chenb Indian J. Pure Appl. Phys. 55 368 (2017)

  23. B K Pande, A K Pande and C K Singh AIP Conference Proceedings 1942, 120004 (2018); https://doi.org/10.1063/1.5028692

    Article  Google Scholar 

  24. Fischer J E and P A Heiney J. Phys. Chem. Solids 54 1725 (1993)

  25. J Sun Phys. Rev. B 75 035424 (2007)

  26. U Sharma, H Joshi and M Kumar Indian J. Pure Appl. Phys. 48 663 (2010)

    Google Scholar 

  27. K Kapoor and N Dass Indian J. Pure Appl. Phys. 47 592 (2009)

    Google Scholar 

  28. F Gugenberger, R Heid, C Meingast, P Adelmann, M Braun, H Wuhl, M Haluska, H Kuzmany Phys. Rev. Lett. 69 3774 (1992)

  29. OA Yagafarov, E L Gromnitskaya, A G Lyapin, V V Brazhkin J. Phys. Conf. Ser. 215 012054 (2010)

  30. C V Pandya, P R Vyas, T C Pandya and V B Gohel B Matter. Sci. 25 63 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, G.R., Thakar, N.A. & Pandya, T.C. Analysis of equations of state as applied to thermoelastic properties of C60 crystalline solid. Indian J Phys 95, 83–88 (2021). https://doi.org/10.1007/s12648-020-01686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01686-7

Keywords

PACS Nos.

Navigation