Skip to main content
Log in

Structural and electrical features of lead-free ferroelectric: Li1/2Bi1/2TiO3

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this communication, the detailed analysis of structural (including microstructural) and electrical (dielectric, impedance, conductivity, and modulus) features of a perovskite Li1/2Bi1/2TiO3 are reported. The compound is prepared by a high-temperature solid-state reaction technique. From X-ray diffraction, the crystal structure is fully satisfied with the monoclinic system of the material. Both dielectric permittivity and loss tangent of the pellet sample is scanned and analyzed in extensive temperatures (30–500 °C) and frequencies (100 Hz–1 MHz). Dielectric anomaly is detected at a particular temperature of 109 °C that may be associated with the ferroelectric-paraelectric phase transition. Through the Nyquist diagram, the presence of grains and grain boundary effect in the compound is detected. The observed non-Debye type of relaxation feature is confirmed through the complex impedance spectroscopy. Impedance analysis suggests that the grain resistance reduces with the rise of operating temperature, showing the negative temperature coefficient of resistance (NTCR) nature. Also, the non-Debye type of relaxation phenomenon is established from the modulus spectroscopy analysis. The significant result infers that this compound may be utilized for different high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H Nagata and T Takenaka Jpn. J. Appl. Phys. 36 6055 (1997)

    Article  ADS  Google Scholar 

  2. T Takenaka, K Maruyama, and K Sakata Jpn. J. Appl. Phys. 30 2236 (1991)

    Article  ADS  Google Scholar 

  3. E Aksel, J S Forrester, B Kowalski, J L Jones, and P A Thomas Appl. Phys. Lett. 99 222901 (2011)

    Article  ADS  Google Scholar 

  4. S Zhang, T R Shrout, H Nagata, Y Hiruma, and T Takenaka IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 910 (2007)

    Article  Google Scholar 

  5. Y R Zhang, J F Li, B P Zhang, and C E. Peng J. Appl. Phys. 103 074109 (2008)

    Article  ADS  Google Scholar 

  6. D Vieffland, N Kim, Z Xu, and DA Payne Am. Ceram. Soc. 78 2481 (1995)

    Article  Google Scholar 

  7. T R Shrout and A Halliyal Bul. Am. Ceram. Soc. 66 704 (1987)

    Google Scholar 

  8. S K Barik, P K Mahapatra, and R N P Choudhary Appl. Phys. A85 199 (2006)

    Article  ADS  Google Scholar 

  9. S K Barik, R N P Choudhary, and P K Mahapatra Curr. Appl. Phys. 9 380 (2009)

    Article  ADS  Google Scholar 

  10. K K Lily, K Prasad, and R N P Choudhary J. Alloys Compd. 453 325 (2008)

    Article  Google Scholar 

  11. B Park An interactive powder diffraction data interpretations and indexing ProgramVersion 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042

  12. S K Barik, S Ahmed, and S Hajra Appl. Phys. A125 200 (2019)

    Article  ADS  Google Scholar 

  13. K Parida, SK Dehury, and RNP Choudhary Phys. Lett. A380 4083 (2016)

    Article  ADS  Google Scholar 

  14. J Rout and R N P Choudhary Ceram. Int. 44 11543 (2018)

    Article  Google Scholar 

  15. J R Macdonald Soli. Stat. Ion. 13 147 (1984)

    Article  ADS  Google Scholar 

  16. S Nath, S K Barik, S Hajra, and R N P Choudhary J. Mater. Sci.: Mater. Electron. 29 12251 (2018)

    Google Scholar 

  17. N Kumar, A Shukla, and RNP Choudhary J. Mater. Sci. Mater. Electron. 28 6673 (2017)

    Article  Google Scholar 

  18. N Kumar, A Shukla, and R N P Choudhary J. Alloys Compd. 747 895 (2018)

    Article  Google Scholar 

  19. X J Xi et al. J. Magn. Magn. Mater. 355 259 (2014)

    Article  ADS  Google Scholar 

  20. N Kumar, A Shukla, N Kumar, R N P Choudhary, and A Kumar RSC Adv. 8 36939 (2018)

    Article  ADS  Google Scholar 

  21. A K Jonscher Nature 267 673 (1977)

    Article  ADS  Google Scholar 

  22. N Kumar, A Shukla, N Kumar, and R N P Choudhary Ceram. Int. 45 822 (2019)

    Article  Google Scholar 

  23. N Kumar, A Shukla, and R N P Choudhary Phys. Lett. A381 2721 (2017)

    Article  ADS  Google Scholar 

  24. S Irfan, S Rizwan, Y Shen, L Li, Asfandiyar, S Butt, and Ce-Wen Nan Sci. Rep. 7 42493 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Kumar Barik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S.K. Structural and electrical features of lead-free ferroelectric: Li1/2Bi1/2TiO3. Indian J Phys 95, 67–72 (2021). https://doi.org/10.1007/s12648-019-01672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01672-8

Keywords

PACS Nos.

Navigation