Skip to main content
Log in

Improvement of oscillation characteristics of ring oscillator through photoconductivity and dielectric constant of photorefractive materials

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The intensity of oscillation and the oscillation frequency shift are two most important parameters that characterize the performance of a photorefractive ring oscillator. In this paper, the effect of photoconductivity and dielectric constant of photorefractive (PR) materials on these parameters has been studied in case of non-degenerate two-wave mixing in PR materials. It has been found that for a given value of photoconductivity of PR material, the highly reflecting (\( R > 90\% \)) cavity mirrors are much effective parameter as compared to the other parameters (frequency detuning, absorption strength, energy beam coupling strength and dielectric constant) for the enhancement of the intensity of oscillation in the oscillator. Also, the magnitude of oscillation frequency of the photorefractive ring oscillator (PRO) can be increased by inserting PR crystal of lower dielectric constant (\( \varepsilon < 7.0 \)), higher photoconductivity (\( \sigma_{\text{p}} > 500\,{\text{pS/cm}} \)) and highly reflectivity (\( R > 90\% \)) cavity mirrors provided that the cavity-length detuning \( \left( {\frac{\Delta \varGamma }{\pi } > 1.0} \right) \) of the oscillator is higher. This means that the intensity and frequency of the PRO could be controlled by the dielectric constant and photoconductivity of a PR crystal which would greatly improve performance of a PRO and their applications based on these photorefractive ring oscillators such as wave front color conversion, optical limiting, optical computing and beam cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P Gunter Nonlinear optical effects and materials (New York: Springer) (2000)

    Book  Google Scholar 

  2. M K Maurya, T K Yadav and R A Yadav Opt. Laser Technol. 42 465 (2010)

    Article  ADS  Google Scholar 

  3. M C Golomb, B Fischer, J White and A Yariv IEEE J. Quantum Electron. 20 12 (1984)

    Article  ADS  Google Scholar 

  4. R Singh, M K Maurya, T K Yadav, D P Singh and R A Yadav Opt. Laser Technol. 43 95 (2011).

    Article  ADS  Google Scholar 

  5. P Yeh Appl. Opt. 23 2974 (1984)

    Article  ADS  Google Scholar 

  6. M K Maurya and R A Yadav Opt. Laser Technol. 47 10 (2013)

    Article  ADS  Google Scholar 

  7. J E Heebner and R W Boyd Opt. Lett. 24 847 (1999)

    Article  ADS  Google Scholar 

  8. M K Maurya and R A Yadav Opt. Laser Technol. 44 55 (2012)

    Google Scholar 

  9. K Zhan, C Hou and S Pu Opt. Laser Technol. 43 1274 (2011)

    Article  ADS  Google Scholar 

  10. M K Maurya J. Sci. Res. Adv. 2 84 (2015)

    Google Scholar 

  11. B I Sturman and V M Fridkin The photovoltaic and photorefractive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers) (1992)

  12. M K Maurya, T K Yadav, D Yadav and R A Yadav Opt. Laser Technol. 43 1041 (2011)

    Article  ADS  Google Scholar 

  13. D M Lininger, P J Martin and D Z Anderson Opt. Lett. 14 697 (1989)

    Article  ADS  Google Scholar 

  14. M K Maurya and R A Yadav Opt. Laser Technol. 44 1191 (2012)

    Article  ADS  Google Scholar 

  15. P Gunter and J P Huignard Topics in applied physics, vols. 61 and 62 (Berlin: Springer) (1988, 1989)

  16. M K Maurya, T K Yadav, R Singh, R A Yadav and D P Singh Opt. Commun. 283 2416 (2010)

    Article  ADS  Google Scholar 

  17. N V Kukhtarev, V B Markov, S G Odulov, M S Soskin and V L Vintskii Ferroelectrics 22 949 (1979)

  18. A M Glass (1978) Opt. Eng. 17 470

    Article  ADS  Google Scholar 

  19. M K Maurya and R A Yadav Opt. Laser Technol. 42 883(2010)

    Article  ADS  Google Scholar 

  20. V Belinitcher and B Sturman Sov. Phys. Uspekhi 23 199 (1980)

    Article  ADS  Google Scholar 

  21. Z Guoquan and G Ru Chin. Phys. Lett. 12 617 (1995)

    Article  Google Scholar 

  22. M K Maurya and R A Yadav Opt. Commun. 283 2615 (2010)

    Article  ADS  Google Scholar 

  23. M K Maurya, T K Yadav and R A Yadav Opt. Laser Technol. 42 775 (2010)

    Article  ADS  Google Scholar 

  24. C Benkert and D Z Anderson. Phy. Rev. A44 4633 (1991)

    Article  ADS  Google Scholar 

  25. M K Maurya, T K Yadav and R A Yadav Pramana-J. Phys. 72 709 (2009)

    Article  ADS  Google Scholar 

  26. M K Maurya and R A Yadav Optik 123 1260 (2012)

    Article  ADS  Google Scholar 

  27. M Carrascosa, J M Cabrera, F Agullo-Lopez IEEE J. Quantum Electron. 27 509 (1991)

    Article  ADS  Google Scholar 

  28. P Yeh Optical waves in layered media (New York: Wiley) (1988)

    Google Scholar 

  29. A Yariv and P Yeh Optical waves in Crystal (New York: Wiley) (1984)

    Google Scholar 

  30. P Yeh, JOSA B 2 1924 (1985)

    Article  ADS  Google Scholar 

  31. R A Ganeev, A I Ryasnyansky, R I Tugushev, M K Kodirov, F R Akhmedjanov and T Usmanov Opt. Quantum Electron. 36 807 (2004)

    Article  Google Scholar 

  32. N Katyala, A Royb, and A Kapoora, Optik 122 207 (2011)

    Article  ADS  Google Scholar 

  33. D Nesheva, Z Aneva and M Gospodinov, J. Phys. Chem. Solids 54 857 (1993)

    Article  ADS  Google Scholar 

  34. L Mosquera, I de Oliveira, J Frejlich, A C Hernandes and S Lanfredi and J F Carvalho J. Appl. Phys. 90 2635 (2001)

    Article  ADS  Google Scholar 

  35. D Nesheva, Z Aneva, and Z Levi J. Phys. Chem. Solids 54 889 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Maurya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, M.K. Improvement of oscillation characteristics of ring oscillator through photoconductivity and dielectric constant of photorefractive materials. Indian J Phys 94, 2043–2050 (2020). https://doi.org/10.1007/s12648-019-01636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01636-y

Keywords

PACS Nos.

Navigation