Skip to main content
Log in

Dielectric and photoconductivity dependence study of four-wave mixing process in photorefractive materials

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Phase-conjugate (PC) reflectivity is one of the most important parameters that characterize the four-wave mixing process in photorefractive (PR) materials. In this paper, the effect of the crystal thickness, modulation ratio and pump intensity ratio on the PC reflectivity of four-wave has been studied in case of the degenerate four-wave mixing process in PR materials. Also, the influence of photoconductivity and dielectric constant of PR materials on the PC reflectivity of the four-wave has been analyzed in case of the non-degenerate wave mixing process of PR materials. It has been found that the reflectivity of the PC wave for BGO and BSO have shown almost similar behavior like LiNbO3 with the peak values observed at 1.21 pS/cm and 1.69 pS/cm. The present results showed that the reflectivity of the PC wave is different for all the materials of dielectric constant 32 (LiNbO3), 40 (BGO) and 56 (BSO) and is higher for higher value of dielectric constant, suggesting that the reflectivity of the PC wave not only depends on the dielectric constant of the photorefractive materials but also strongly depends upon the photoconductivity of the materials. For lower value of coupling coefficient, it is observed that the peak intensity of reflectivity of PC wave occur at higher thickness and for higher values of coupling coefficient it is observed at lower crystal thickness. The enhancement in the reflectivity of the optical phase-conjugate wave would greatly improve the performance of the devices based on the four wave mixing process. Such devices find applications in the areas like optical memories, information processing, real-time processing, beam steering, beam combining, resonators and pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R A Fisher Optical Phase Conjugation (New York: Academic Press) (1983)

    Google Scholar 

  2. L I Ivleva, N V Bogodaev, P A Lykov, V V Osiko and N M Polozkov Laser Phys. 12 702 (2002)

    Google Scholar 

  3. P Yeh Introduction to Photorefractive Nonlinear Optics (New York: Wiley) (1993)

    Google Scholar 

  4. Z Z Lan and B L Guo Nonlinear Dyn. 100 3771 (2020)

    Article  Google Scholar 

  5. X H Zhao Appl. Math. Lett. 121 107383 (2021)

    Article  Google Scholar 

  6. Z Z Lan Appl. Math. Lett. 107 106382 (2020)

    Article  MathSciNet  Google Scholar 

  7. M K Maurya and R A Yadav Opt. Laser Tech. 47 10 (2013)

    Article  ADS  Google Scholar 

  8. T K Yadav, M K Maurya and R A Yadav Optik 123 1120 (2012)

    Article  ADS  Google Scholar 

  9. M D Ewbank Opt. Lett. 13 47 (1988)

    Article  ADS  Google Scholar 

  10. M C Golomb, B Fischer, J O White and A Yariv Appl. Phys. Lett. 42 919 (1983)

    Article  ADS  Google Scholar 

  11. H Eichler J. Nolinear Opt. Phys. Mater. 10 43 (2001)

    Article  ADS  Google Scholar 

  12. R W Schirmer, M Y Lanzerotti and A L Gaeta Phys. Rev. A 55 3155 (1997)

    Article  ADS  Google Scholar 

  13. M K Maurya Indian J. Phys. 94 2043 (2020)

    Article  ADS  Google Scholar 

  14. M K Maurya, T K Yadav, D Yadav and R A Yadav Opt. Laser Tech. 43 1041 (2011)

    Article  ADS  Google Scholar 

  15. D M Lininger, P J Martin and D Z Anderson Opt. Lett. 14 697 (1989)

    Article  ADS  Google Scholar 

  16. M K Maurya and R A Yadav Opt. Laser Tech. 44 1191 (2012)

    Article  ADS  Google Scholar 

  17. P Gunter and J P Huignard Topics in Applied Physics (Berlin: Springer) (1988)

    Google Scholar 

  18. M K Maurya, T K Yadav, R Singh, R V Yadav and D P Singh Opt. Comm. 283 2416 (2010)

    Article  ADS  Google Scholar 

  19. N V Kukhtarev, B V Markov, S G Odulov, M S Soskin and V L Vintskii Ferroelectrics 22 949 (1979)

    Article  Google Scholar 

  20. A M Glass Opt. Eng. 17 470 (1978)

    Article  ADS  Google Scholar 

  21. M K Maurya and R A Yadav Opt. Laser Tech. 42 883 (2010)

    Article  ADS  Google Scholar 

  22. R Singh, M K Maurya, T K Yadav, R A Yadav and D P Singh Opt. Laser Tech. 43 95 (2011)

  23. V Belinitcher and B Sturman Sov. Phys. Uspekhi 23 199 (1980)

    Article  ADS  Google Scholar 

  24. M K Maurya and R A Yadav Opt. Laser Tech. 44 505 (2012)

    Article  ADS  Google Scholar 

  25. T K Yadav, M K Maurya and R A Yadav Optik 123 1329 (2012)

    Article  ADS  Google Scholar 

  26. Z Guoquan and G Ru Chin. Phys. Lett. 12 617 (1995)

    Article  Google Scholar 

  27. M K Maurya and R A Yadav Opt. Comm. 283 2615 (2010)

    Article  ADS  Google Scholar 

  28. M K Maurya, T K Yadav and R A Yadav Opt. Laser Tech. 42 775 (2010)

    Article  ADS  Google Scholar 

  29. C Benkert and D Z Anderson Phys. Rev. A 44 4633 (1991)

    Article  ADS  Google Scholar 

  30. M K Maurya, T K Yadav and R A Yadav Pramana J. Phys. 72 709 (2009)

    Article  ADS  Google Scholar 

  31. M K Maurya and R A Yadav Optik 123 1260 (2012)

    Article  ADS  Google Scholar 

  32. M Carrascosa, J M Cabrera and F Agullo-Lopez IEEE J. Quant. Electr. 27 509 (1991)

    Article  ADS  Google Scholar 

  33. P Yeh Optical Waves in Layered Media (New York: Wiley) (1988)

    Google Scholar 

  34. K R Macdonald and J Feinberg Phys. Rev. Lett. 55 821 (1985)

    Article  ADS  Google Scholar 

  35. M Cronin-Golomb, B Fischer, J O White and A Yariv IEEE J. Quantum Elec. 20 12 (1984)

    Article  ADS  Google Scholar 

  36. P Xie, J H Dai and H J Zhaug J. Opt. Sot. Am. B 9 2240 (1992)

    Article  ADS  Google Scholar 

  37. T Yoshihara, Y Uesu, K Hikita and H Iizuka J. Appl. Phys. 32 4296 (1993)

    Article  Google Scholar 

  38. J A Gomez, G Hector Lorduy and A Salazar Opt. Commun. 284 1008 (2011)

    Article  ADS  Google Scholar 

  39. L Mosquera, I de Oliveira, J Frejlich, A C Hernandes, S Lanfredi and J F Carvalho J. Appl. Phys 90 2635 (2001)

    Article  ADS  Google Scholar 

  40. K Peithmann, K Buse and E Kratzig J. Appl. Phys. B 74 549 (2002)

    Article  ADS  Google Scholar 

  41. M Y Lanzerotti and R W Schirmer Appl. Phys. Lett. 69 1199 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (TKY) acknowledges the CSIR-New Delhi India for the financial support in form of the SRF during the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Maurya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, T.K., Maurya, M.K., Kumar, S. et al. Dielectric and photoconductivity dependence study of four-wave mixing process in photorefractive materials. Indian J Phys 96, 3289–3296 (2022). https://doi.org/10.1007/s12648-021-02244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02244-5

Keywords

Navigation