Skip to main content
Log in

Nonlinear Schrödinger equation and semiclassical description of the microwave-to-optical frequency conversion based on the Lamb–Retherford experiment

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

It is shown that Lamb–Retherford experiment can be completely described within the framework of classical field theory without using such concepts as discrete states of the atom and jump-like electron transitions between them. The rate of stimulated decay of the metastable state of a hydrogen atom in an external periodic electric field is determined. The dependence of this rate on the frequency and amplitude of the external electric field, as well as on the parameters of the atom, is obtained. It is shown that the maximum value of the stimulated decay rate of the metastable state of a hydrogen atom is achieved at a frequency of an external electric field equal to the frequency shift corresponding to either the fine structure of the hydrogen atom or the Lamb shift. Using the Lamb–Retherford idea, a direct method of the microwave-to-optical frequency conversion is suggested. A theory of this conversion is developed, and the intensity of optical emission induced by microwave radiation is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W E Lamb and R C Retherford Phys. Rev.72 (4) 241 (1947)

    Article  ADS  Google Scholar 

  2. W E Lamb and R C Retherford Phys. Rev.79 (4) 549 (1950)

    Article  ADS  Google Scholar 

  3. W E Lamb and R C Retherford Phys. Rev.81 (1) 222 (1951)

    Article  ADS  Google Scholar 

  4. W E Lamb and R C Retherford Phys. Rev.85 (1) 259 (1952)

    Article  ADS  Google Scholar 

  5. W E Lamb and R C Retherford Phys. Rev.86 (6) 1014 (1952)

    Article  ADS  Google Scholar 

  6. S Triebwasser, E S Dayhoff and W E Lamb Phys. Rev.89 (1) 98 (1953)

    Article  ADS  Google Scholar 

  7. B H Bransden and C J Joachain PHYSICS of Atoms and Molecules (New Delhi: Pearson Education India) (2003)

    Google Scholar 

  8. S A Rashkovskiy Quantum Stud. Math. Found.4 (1) 29 (2017)

    Article  MathSciNet  Google Scholar 

  9. S A Rashkovskiy Indian J. Phys.91 (6) 607 (2017)

    Article  ADS  Google Scholar 

  10. S A Rashkovskiy Prog. Theor. Exp. Phys. 013A03 (2017)

  11. S A Rashkovskiy Indian J. Phys.92 (3) 289 (2018)

    Article  ADS  Google Scholar 

  12. S A Rashkovskiy Quantum Stud. Math. Found.3 (2) 147 (2016)

    Article  MathSciNet  Google Scholar 

  13. S A Rashkovskiy Proc. SPIE. 9570, The Nature of Light: What are Photons? VI 95700G (2015)

  14. S A Rashkovskiy Prog. Theor. Exp. Phys. 123A03 (2015)

  15. M D Crisp and E T Jaynes Phys. Rev.179 (5) 1253 (1969)

    Article  ADS  Google Scholar 

  16. C R Stroud and E T Jaynes Phys. Rev. A 1 106 (1970)

    Article  ADS  Google Scholar 

  17. A O Barut and J F Van Huele Phys. Rev. A 32 (6) 3187 (1985)

    Article  ADS  Google Scholar 

  18. A O Barut and J P Dowling. Phys. Rev. A 36 (6) 2550 (1987)

    Article  ADS  Google Scholar 

  19. R van den Doel and J J J Kokkedee Phys. Rev. A 9 (3) 1468 (1974)

    Article  ADS  Google Scholar 

  20. L D Landau and E M Lifshitz The Classical Theory of Fields, Vol. 2, 4th edn. (Butterworth-Heinemann) (1975)

  21. R J Schoelkopf and S M Girvin Nature451 664 (2008)

    Article  ADS  Google Scholar 

  22. A I Lvovsky, B C Sanders and W Tittel Nat. Photonics3 706 (2009)

    Article  ADS  Google Scholar 

  23. M Hafezi, Z Kim, S L Rolston, L A Orozco, B L Lev and J M Taylor Phys. Rev. A85 020302 (2012)

    Article  ADS  Google Scholar 

  24. A Imamoğlu Phys. Rev. Lett.102 083602 (2009)

    Article  ADS  Google Scholar 

  25. D Marcos, M Wubs, J M Taylor, R Aguado, M D Lukin and A S Sørensen Phys. Rev. Lett.105 210501 (2010)

    Article  ADS  Google Scholar 

  26. L A Williamson, Y-H Chen and J J Longdell Phys. Rev. Lett.113 203601 (2014)

    Article  ADS  Google Scholar 

  27. X Fernandez-Gonzalvo, Y-H Chen, C Yin, S Rogge and J J Longdell Phys. Rev. A92 062313 (2015)

    Article  ADS  Google Scholar 

  28. T Bagci, A Simonsen, S Schmid, L G Villanueva, E Zeuthen, J Appel et al. Nature507 81 (2014)

    Article  ADS  Google Scholar 

  29. R W Andrews, R W Peterson, T P Purdy, K Cicak, R W Simmonds, C A Regal et al. Nat. Phys.10 321 (2014)

    Article  Google Scholar 

  30. J Bochmann, A Vainsencher, D D Awschalom and A N Cleland Nat. Phys.9 712 (2013)

    Article  Google Scholar 

  31. C Xiong, W H P Pernice and H X Tang Nano Lett.12 3562 (2012)

    Article  ADS  Google Scholar 

  32. L Chen, Q Xu, M G Wood and R M Reano Optica1 112 (2014)

    Article  ADS  Google Scholar 

  33. M Tsang Phys. Rev. A81 063837 (2010)

    Article  ADS  Google Scholar 

  34. M Tsang Phys. Rev. A84 043845 (2011)

    Article  ADS  Google Scholar 

  35. A Rueda, F Sedlmeir, M C Collodo, U Vogl, B Stiller, G Schunk et al. Optica, 3 (6), 597 (2016)

    Article  ADS  Google Scholar 

  36. S Rashkovskiy Quantum Foundations, Probability and Information, A. Khrennikov, B. Toni (eds.) (STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, Springer International Publishing AG) 197 (2018)

  37. S Stenholm and W E Lamb Jr. Phys. Rev.181 (2) 618 (1969)

    Article  ADS  Google Scholar 

  38. W E Lamb Jr, R R Schlicher and M O Scully Phys. Rev. A 36 (6) 2763 (1987)

    Article  ADS  Google Scholar 

  39. R K Nesbet Phys. Rev. A 4 (1) 259 (1971)

    Article  ADS  Google Scholar 

  40. E T Jaynes Coherence and quantum optics, L Mandel, E Wolf (eds.) (Boston, MA: Springer) 35 (1973)

  41. J P Gordon Phys. Rev. A 12 (6) 2487 (1975)

    Article  ADS  Google Scholar 

  42. A O Barut and J P Dowling Phys. Rev. A 36 (2) 649 (1987)

    Article  ADS  Google Scholar 

  43. P W Milonni Phys. Rep.25 (1) 1 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was done on the theme of the State Task No. AAAA-A17-117021310385-6. Funding was provided in part by the Tomsk State University competitiveness improvement program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Rashkovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashkovskiy, S.A. Nonlinear Schrödinger equation and semiclassical description of the microwave-to-optical frequency conversion based on the Lamb–Retherford experiment. Indian J Phys 94, 161–174 (2020). https://doi.org/10.1007/s12648-019-01476-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01476-w

Keywords

PACS Nos.

Navigation