Skip to main content
Log in

Understanding perceived color through gradual spectroscopic variations in electrochromism

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A bias-dependent in situ Raman scattering and UV–Vis absorption spectroscopic change has been correlated with the corresponding color change of an electrochromic device in an attempt to explain how to understand the relationship between actual perceived color and its absorption/transmittance spectra. For this, the bias across an electrochromic device was increased gradually, rather than abruptly turning ON and OFF, to see subtle variations in Raman and absorption spectra due to bias. Raman scattering establishes that viologen changes its oxidation state reversibly between two redox species (EV2+ to EV+•) as a result of bias-induced dynamic redox process. A gradual variation in Raman and absorption spectra, which shows maximum absorption corresponding to the yellow light, accompanies similar variation in color change of the device as visible by naked eye. These spectroscopic results are correlated with the perceived blue color, in the reflected light, by the eye to understand the actual reason behind this. Maximum absorption of yellow light by the device resulting in blue appearance has been explained using the concept of additive and subtractive primary colors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S Zhang, G Sun, Y He, R Fu, Y Gu and S Chen ACS Appl. Mater. Interfaces 9 16426 (2017)

    Article  Google Scholar 

  2. S Zhang, C Ran, S Chen, Y Gu, M Jiang, F Hu and B Yan J. Electrochem. Soc. 164 H1021 (2017)

    Article  Google Scholar 

  3. R J Mortimer Annu. Rev. Mater. Res. 41 241 (2011)

    Article  ADS  Google Scholar 

  4. R J Mortimer Electrochim. Acta 44 2971 (1999)

    Article  Google Scholar 

  5. T Oi Annu. Rev. Mater. Sci. 16 185 (1986)

    Article  ADS  Google Scholar 

  6. S-H Lee, R Deshpande, P A Parilla, K M Jones, B To, A H Mahan and A C Dillon Adv. Mater. 18 763 (2006)

    Article  Google Scholar 

  7. B N Reddy, M Deepa, A G Joshi and A K Srivastava J. Phys. Chem. C 115 18354 (2011)

    Article  Google Scholar 

  8. V K Thakur, G Ding, J Ma, P S Lee and X Lu Adv. Mater. Wiley Online Library (2012). http://onlinelibrary.wiley.com/doi/10.1002/adma.201200213/full

  9. G A Niklasson and C G Granqvist J. Mater. Chem. 17 127 (2006)

    Article  Google Scholar 

  10. M V Limaye, J S Chen, S B Singh, Y C Shao, Y F Wang, C W Pao, H M Tsai, J F Lee, H J Lin, J W Chiou, M C Yang, W T Wu, J S Chen, J J Wu, M H Tsai and W F Pong RSC Adv. (RSC Publishing). https://doi.org/10.1039/c3ra45421e, http://pubs.rsc.org/-/content/articlehtml/2014/ra/c3ra45421e

  11. L Kang, Y Gao, H Luo, Z Chen, J Du, and Z Zhang ACS Appl. Mater. Interfaces 3 135 (2011)

    Article  Google Scholar 

  12. E Armstrong, M Osiak, H Geaney, C Glynn and C O’Dwyer Cryst. Eng. Commun. 16 10804 (2014)

    Article  Google Scholar 

  13. F Zheng, W Man, M Guo, M Zhang and Q Zhen Cryst. Eng. Commun. 17 5440 (2015)

    Article  Google Scholar 

  14. F Zheng, H Lu, M Guo and M Zhang Cryst. Eng. Commun. 15 5828 (2013)

    Article  Google Scholar 

  15. S Kim, N Shim, H Lee and B Moon J. Mater. Chem. 22 13558 (2012)

    Article  Google Scholar 

  16. B Han, Z Li, T Wandlowski, A Błaszczyk and M Mayor J. Phys. Chem. C 111 13855 (2007)

    Article  Google Scholar 

  17. G Chidichimo, B C De Simone, D Imbardelli, M De Benedittis, M Barberio, L Ricciardi and A Beneduci J. Phys. Chem. C 118 13484 (2014)

    Article  Google Scholar 

  18. Y Alesanco, A Viñuales, J Palenzuela, I Odriozola, G Cabañero, J Rodriguez and R Tena-Zaera ACS Appl. Mater. Interfaces 8 14795 (2016)

    Article  Google Scholar 

  19. J Palenzuela, A Viñuales, I Odriozola, G Cabañero, H J Grande and V Ruiz ACS Appl. Mater. Interfaces 6 14562 (2014)

    Article  Google Scholar 

  20. E Hwang, S Seo, S Bak, H Lee, M Min and H Lee Adv. Mater. 26 5129 (2014)

    Article  Google Scholar 

  21. A J Olaya, P Ge, J F Gonthier, P Pechy, C Corminboeuf and H H Girault J. Am. Chem. Soc. 133 12115 (2011)

    Article  Google Scholar 

  22. H C Moon, T P Lodge and C D Frisbie Chem. Mater. 27 1420 (2015)

    Article  Google Scholar 

  23. Z Ji, S K Doorn and M Sykora ACS Nano 9 4043 (2015)

    Article  Google Scholar 

  24. S M Kim, J H Jang, K K Kim, H K Park, J J Bae, W J Yu, I H Lee, G Kim, D D Loc, U J Kim, E-H Lee, H-J Shin, J-Y Choi and Y H Lee J. Am. Chem. Soc. 131 327 (2009)

    Article  Google Scholar 

  25. B Liu, A Blaszczyk, M Mayor and T Wandlowski ACS Nano 5 5662 (2011)

    Article  Google Scholar 

  26. R Kumar, R G Pillai, N Pekas, Y Wu and R L McCreery J. Am. Chem. Soc. 134 14869 (2012)

    Article  Google Scholar 

  27. T Lu and T M Cotton J. Phys. Chem. 91 5978 (1987)

    Article  Google Scholar 

  28. D J Barker, R P Cooney and L A Summers J. Raman Spectrosc. 16 265 (1985)

    Article  ADS  Google Scholar 

  29. O Poizat, C Sourisseau and Y Mathey J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 80 3257 (1984)

    Google Scholar 

  30. S Mishra, H Pandey, P Yogi, S K Saxena, S Roy, P R Sagdeo and R Kumar Opt. Mater. 66 65 (2017)

    Article  ADS  Google Scholar 

  31. X Liu, K G Neoh and E T Kang Langmuir 18 9041 (2002)

    Article  Google Scholar 

  32. D J Barker, R P Cooney and L A Summers J. Raman Spectrosc. Wiley Online Library (1987). http://onlinelibrary.wiley.com/doi/10.1002/jrs.1250180612/full

    Google Scholar 

  33. J Romanova, V Liégeois and B Champagne Phys. Chem. Chem. Phys. 16 21721 (2014)

    Article  Google Scholar 

  34. S Ghoshal, T Lu, Q Feng and T M Cotton Spectrochim. Acta Part Mol. Spectrosc. 44 651 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge financial support from the Department of Science and Technology (DST), Govt. of India. Authors are thankful to Dr. K. V. Adarsh (IISER Bhopal) for Raman measurements. Authors thank Prof. V.D. Vankar (IIT Delhi) for useful discussions. Authors (AC and DKP) are thankful to MHRD and CSIR (Govt. of India), respectively, for providing fellowships. Support received from DST under FIST scheme (grant number: SR/FST/PSI-225/2016) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Yogi, P., Chaudhary, A. et al. Understanding perceived color through gradual spectroscopic variations in electrochromism. Indian J Phys 93, 927–933 (2019). https://doi.org/10.1007/s12648-018-1353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1353-7

Keywords

PACS No.

Navigation