Skip to main content

Control of Emission and Coloration in Electrochemical Systems and Its Applications

  • Chapter
  • First Online:
Luminescence in Electrochemistry

Abstract

This chapter describes the mechanisms of both emission and coloration control in electrochemical systems as well as their photophysical properties (e.g., response time, durability) and their applications. The first section provides a short overview on emission and coloration control upon various kinds of external stimuli. Then, we review the control of both emission and coloration processes based on electrochemical systems in our work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tyer McQuade, D., Pullen, A.E., Swager, T.M.: Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000)

    Article  CAS  Google Scholar 

  2. Martinez-Mañez, R., Sancenon, F.: Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)

    Article  CAS  Google Scholar 

  3. Rizzo, M.A., Springer, G.H., Granada, B., Piston, D.W.: An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004)

    Article  CAS  Google Scholar 

  4. De Silva, A.P., Gunaratne, H.Q.N., McCoy, C.P.: A molecular photonic and gate based on fluorescent signaling. Nature 364, 42–44 (1993)

    Article  Google Scholar 

  5. Credi, A., Balzani, V., Langford, S.J., Stoddart, J.F.: Logic operations at the molecular level. An xor gate based on a molecular machine. J. Am. Chem. Soc. 119, 2679–2681 (1997)

    Article  CAS  Google Scholar 

  6. De Silva AP, McClenaghan ND (2004) Molecular-scale logic gates. Chem –Eur J 10:574–586

    Google Scholar 

  7. Irie, M.: Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000)

    Article  CAS  Google Scholar 

  8. Irie, M., Fukaminato, T., Sasaki, T., Tamai, N., Kawai, T.: Organic chemistry: a digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002)

    Article  CAS  Google Scholar 

  9. Bechinger, C., Ferrere, S., Zaban, A., Sprague, J., Gregg, B.A.: Photoelectrochromic windows and displays. Nature 383, 608–610 (1996)

    Article  CAS  Google Scholar 

  10. Wang, X.J., Lau, W.M., Wong, K.Y.: Display device with dual emissive and reflective modes. Appl. Phys. Lett. 87, 113502 (2005)

    Article  CAS  Google Scholar 

  11. Watanabe, Y., Nakamura, K., Kobayashi, N.: Fabrication of novel reflective-emissive dual-mode display cell based on electrochemical reaction. Chem. Lett. 39, 1309–1311 (2010)

    Article  CAS  Google Scholar 

  12. Koyuncu, S., Usluer, O., Can, M., Demic, S., Icli, S., Serdar Sariciftci, N.: Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-1H-pyrrole system. J. Mater. Chem. 21, 2684–2693 (2011)

    Article  CAS  Google Scholar 

  13. Puodziukynaite, E., Oberest, J.L., Dyer, A.L., Reynolds, J.R.: Establishing dual electrogenerated chemiluminescence and multicolor electrochromism in functional ionic transition-metal complexes. J. Am. Chem. Soc. 134, 968–978 (2012)

    Article  CAS  Google Scholar 

  14. Miesenböck, G., De Angelis, D.A., Rothman, J.E.: Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998)

    Article  Google Scholar 

  15. Lee, K., Asher, S.A.: Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122, 9534–9537 (2000)

    Article  CAS  Google Scholar 

  16. Zhang, X., Rehm, S., Safont-Sempere, M.M., Würthner, F.: Photonic crystal chemical sensors: pH and ionic strength. Nat. Chem. 1, 623–629 (2009)

    Article  CAS  Google Scholar 

  17. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

  18. Yamaguchi, S., Shirasaka, T., Akiyama, S., Tamao, K.: Dibenzoborole-containing π-electron systems: remarkable fluorescence change based on the “on/off” control of the pπ–π* conjugation. J. Am. Chem. Soc. 124, 8816–8817 (2002)

    Article  CAS  Google Scholar 

  19. Han, J., Burgess, K.: Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010)

    Article  CAS  Google Scholar 

  20. Nakai, H., Kitagawa, K., Nakamori, H., Tokunaga, T., Matsumoto, T., Nozaki, K., Ogo, S.: Reversible switching of the luminescence of a photoresponsive gadolinium(III) complex. Angew. Chem. 52, 8722–8725 (2013)

    Article  CAS  Google Scholar 

  21. Carpick, R.W., Sasaki, D.Y., Bums, A.R.: First observation of mechanochromism at the nanometer scale. Langmuir 16, 1270–1278 (2000)

    Article  CAS  Google Scholar 

  22. Kaupp, G.: Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11, 388–403 (2009)

    Article  CAS  Google Scholar 

  23. Zhang, X., Chi, Z., Zhang, Y., Liu, S., Xu, J.: Reversible switching emissions of tetraphenylethene derivatives among multiple colors with solvent vapor, mechanical, and thermal stimuli. J. Mater. Chem. C 21, 8338–8346 (2011)

    Article  CAS  Google Scholar 

  24. Wenger, O.S.: Vapochromism in organometallic and coordination complexes: chemical sensors for volatile organic compounds. Chem. Rev. 113, 3686–3733 (2013)

    Article  CAS  Google Scholar 

  25. Xu, J., Jia, L., Jin, N., Ma, Y., Liu, X., Wu, W., Liu, W., Tang, Y., Zhou, F.: Fixed-component lanthanide-hybrid-fabricated full-color photoluminescent films as vapoluminescent sensors. Chem. –Eur. J. 19, 4556–4562 (2013)

    Google Scholar 

  26. Kobayashi, A., Kato, M.: Vapochromic platinum(II) complexes: crystal engineering toward intelligent sensing devices. Eur. J. Inorg. Chem. 2014, 4469–4483 (2014)

    Article  CAS  Google Scholar 

  27. Fukaminato, T., Sasaki, T., Kawai, Y., Tamai, N., Irie, M.: Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J. Am. Chem. Soc. 126, 14843–14849 (2004)

    Article  CAS  Google Scholar 

  28. Matsuda, K., Irie, M.: Diarylethene as a photoswitching unit. J. Photochem. Photobiol. C: Photochem. Rev. 5, 169–182 (2004)

    Article  CAS  Google Scholar 

  29. Amimoto, K., Kawato, T.: Photochromism of organic compounds in the crystal state. J. Photochem. Photobiol. C: Photochem. Rev. 6, 207–226 (2005)

    Article  CAS  Google Scholar 

  30. Kishimoto, Y., Abe, J.: A fast photochromic molecule that colors only under UV light. J. Am. Chem. Soc. 131, 4227–4229 (2009)

    Article  CAS  Google Scholar 

  31. Hirata, S., Watanabe, T.: Reversible thermoresponsive recording of fluorescent images (TRF). Adv. Mater. 18, 2725–2729 (2006)

    Article  CAS  Google Scholar 

  32. Yamamoto, S., Furuya, H., Tsutsui, K., Ueno, S., Sato, K.: In situ observation of thermochromic behavior of binary mixtures of phenolic long-chain molecules and fluoran dye for rewritable paper application. Cryst. Growth Des. 8, 2256–2263 (2008)

    Article  CAS  Google Scholar 

  33. Hirata, S., Lee, K.-S., Watanabe, T.: Reversible fluorescent on–off recording in a highly transparent polymeric material utilizing fluorescent resonance energy transfer (FRET) induced by heat treatment. Adv. Funct. Mater. 18, 2869–2879 (2008)

    Article  CAS  Google Scholar 

  34. Zhao, Y., Gao, H., Fan, Y., Zhou, T., Su, Z., Liu, Y., Wang, Y.: Thermally induced reversible phase transformations accompanied by emission switching between different colors of two aromatic-amine compounds. Adv. Mater. 21, 3165–3169 (2009)

    Article  CAS  Google Scholar 

  35. Azizian, F., Field, A.J., Heron, B.M., Kilner, C.: Intrinsically thermochromic fluorans. Chem. Commun. 48, 750–752 (2012)

    Article  CAS  Google Scholar 

  36. Nakamura, K., Kobayashi, Y., Kanazawa, K., Kobayashi, N.: Thermoswitchable emission and coloration of a composite material containing a europium(III) complex and a fluoran dye. J. Mater. Chem. C 1, 617–620 (2013)

    Article  CAS  Google Scholar 

  37. Mortimer, R.J.: Organic electrochromic materials. Electrochim. Acta 44, 2971–2981 (1999)

    Article  CAS  Google Scholar 

  38. Rauch, R.D.: Enhanced redox stability and electrochromic properties of aromatic polyamides based on N,N-bis(4-carboxyphenyl)-N′,N′-bis(4-tert-butylphenyl)-1,4-phenylenediamine. Electrochim. Acta 44, 3165–3176 (1999)

    Article  Google Scholar 

  39. Granqvist, C.G.: Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60, 201–262 (2000)

    Article  CAS  Google Scholar 

  40. Argun, A.A., Aubert, P.-H., Thompson, B.C., Schwendeman, I., Gaupp, C.L., Hwang, J., Pinto, N.J., Tanner, D.B., MacDiarmid, A.G., Reynolds, J.R.: Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 16, 4401–4412 (2004)

    Article  CAS  Google Scholar 

  41. Monk, R.M.S., Mortimer, R.J., Rosseinsky, D.R.: Electrochromism and Electrochromic devices. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  42. Kobayashi, N., Miura, S., Nishimura, M., Urano, H.: Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells 92, 136–139 (2008)

    Article  CAS  Google Scholar 

  43. Imanori, H., Sakata, Y.: Donor-linked fullerenes: photoinduced electron transfer and its potential application. Adv. Mater. 9, 537–546 (1997)

    Article  Google Scholar 

  44. Valeur, B.: Molecular Fluorescence: Principles and Applications. Wiley-VCH Verlag GmbH, New York (2001)

    Google Scholar 

  45. De Silva, A.P., Moody, T.S., Wright, G.D.: Fluorescent pet (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134, 2385–2393 (2009)

    Article  CAS  Google Scholar 

  46. Turro, N.J., Ramamurthy, V., Scaiano, J.C.: Principles of Molecular Phorochemistry An Introduction. University Science Books, Mill-Valley, California (2009)

    Google Scholar 

  47. Audebert, P., Miomandre, F.: Electrofluorochromism: from molecular systems to set-up and display. Chem. Sci. 4, 575–584 (2013)

    Article  CAS  Google Scholar 

  48. Jares-Erijman, E.A., Jovin, T.M.: FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003)

    Article  CAS  Google Scholar 

  49. Watanabe, Y., Nakamura, K., Kobayashi, N.: Improvement in reflective-emissive dual-mode properties of electrochemical displays by electrode modification. Phys. Chem. Chem. Phys. 13, 19420–19425 (2011)

    Article  CAS  Google Scholar 

  50. Nakamura, K., Kanazawa, K., Kobayashi, N.: Electrochemically controllable emission and coloration by using europium(III) complex and viologen derivatives. Chem. Commun. 47, 10064–10066 (2011)

    Article  CAS  Google Scholar 

  51. Kanazawa, K., Nakamura, K., Kobayashi, N.: Electroswitching of emission and coloration with quick response and high reversibility in an electrochemical cell. Chem. -Asian J. 7, 2551–2554 (2012)

    Google Scholar 

  52. Kanazawa, K., Nakamura, K., Kobayashi, N.: Dual emissive-reflective display materials with large emission switching using highly luminescent lanthanide(III) complex and electrochromic material. Jpn. J. Appl. Phys. 52, 05DA14 (2013)

    Google Scholar 

  53. Nakamura, K., Kanazawa, K., Kobayashi, N.: Electrochemically-switchable emission and absorption by using luminescent lanthanide(III) complex and electrochromic molecule toward novel display device with dual emissive and reflective mode. Displays 34, 389–395 (2013)

    Article  CAS  Google Scholar 

  54. Yoshida, M., Yashiro, N., Shitama, H., Kobayashi, A., Kato, M.: Redox-active dinuclear platinum complex exhibiting multicolored electrochromism and luminescence. Chem. –Eur. J. 22, 491–495 (2016)

    Google Scholar 

  55. Hasegawa, Y., Nakagawa, T., Kawai, T.: Recent progress of luminescent metal complexes with photochromic units. Coord. Chem. Rev. 254, 2643–2651 (2010)

    Article  CAS  Google Scholar 

  56. Fukaminato, T., Doi, T., Tamaoki, N., Okuno, K., Ishibashi, Y., Miyasaka, H., Irie, M.: Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. J. Am. Chem. Soc. 133, 4984–4990 (2011)

    Google Scholar 

  57. Ouhenia-Ouadahi, K., Yasukuni, R., Yu, P., Laurent, G., Pavageau, C., Grand, J., Guérin, J., Léaustic, A., Félidj, N., Aubard, J., Nakatani, K.: Photochromic-fluorescent-plasmonic nanomaterials: towards integrated three-component photoactive hybrid nanosystems. Chem. Commun. 50, 7299–7302 (2014)

    Article  CAS  Google Scholar 

  58. Fukaminato, T., Hirose, T., Doi, T., Hazama, M., Matsuda, K., Irie, M.: Molecular design strategy toward diarylethenes that photoswitch with visible light. J. Am. Chem. Soc. 136, 17145–17154 (2014)

    Google Scholar 

  59. Miomandre, F., Méallet-Renault, R., Vachon, J.J., Pansu, R.B., Audebert, P.: Fluorescence microscopy coupled to electrochemistry: a powerful tool for the controlled electrochemical switch of fluorescent molecules. Chem. Commun., 1913–1915 (2008)

    Google Scholar 

  60. Miomandre, F., Lépicier, E., Munteanu, S., Galangau, O., Audibert, J.F., Méallet-Renault, R., Audebert, P., Pansu, R.B.: Electrochemical monitoring of the fluorescence emission of tetrazine and bodipy dyes using total internal reflection fluorescence microscopy coupled to electrochemistry. ACS Appl. Mater. Interfaces 3, 690–696 (2011)

    Article  CAS  Google Scholar 

  61. Miomandre, F., Audibert, J.F., Zhou, Q., Audebert, P., Martin, P., Lacroix, J.C.: Tunable electrofluorochromic device from electrochemically controlled complementary fluorescent conjugated polymer films. Electrochim. Acta Interfaces 110, 56–62 (2013)

    Article  CAS  Google Scholar 

  62. Seo, S., Allain, H., Na, J., Kim, S., Yang, X., Park, C., Malinge, J., Audebert, P., Kim, E.: Electrofluorescence switching of tetrazine-modified TiO2 nanoparticles. Nanoscale 5, 72321–72327 (2013)

    Google Scholar 

  63. Quinton, C., Alain-Rizzo, V., Dumas-Verdes, C., Miomandre, F., Clavier, G., Audebert, P.: Redox-controlled fluorescence modulation (electrofluorochromism) in triphenylamine derivatives. RSC Adv. 4, 34332–34342 (2014)

    Article  CAS  Google Scholar 

  64. Quinton, C., Alain-Rizzo, V., Dumas-Verdes, C., Miomandre, F., Clavier, G., Audebert, P.: Redox- and protonation-induced fluorescence switch in a new triphenylamine with six stable active or non-active forms. Chem. –Eur. J. 21, 2230–2240 (2015)

    Google Scholar 

  65. Seo, S., Kim, Y., You, J., Sarwade, B.D., Wadgaonkar, P.P., Menon, S.K., More, A.S., Kim, E.: Electrochemical fluorescence switching from a patternable poly(1,3,4-oxadiazole) thin film. Macromol. Rapid Commun. 32, 637–643 (2011)

    Article  CAS  Google Scholar 

  66. Yang, X., Seo, S., Park, C., Kim, E.: Electrical chiral assembly switching of soluble conjugated polymers from propylenedioxythiophene-phenylene copolymers. Macromolecule 47, 7043–7051 (2014)

    Article  CAS  Google Scholar 

  67. Mai, S., Wu, J., Liu, J., Xu, Z., Wu, X., Luo, G., Zheng, J., Xu, C.: AIEE-active and electrochromic bifunctional polymer and a device composed thereof synchronously achieve electrochemical fluorescence switching and electrochromic switching. ACS Appl. Mater. Interfaces 7, 27511–27517 (2015)

    Article  CAS  Google Scholar 

  68. Zhang, G., Zhang, D., Guo, X., Zhu, D.: A new redox-fluorescence switch based on a triad with tetrathiafulvalene and anthracene units. Org. Lett. 6, 1209–1212 (2004)

    Article  CAS  Google Scholar 

  69. Zapata, F., Caballero, A., Espinosa, A., Tarraga, A., Molina, P.: A redox-fluorescent molecular switch based on a heterobimetallic Ir(III) complex with a ferrocenyl azaheterocycle as ancillary ligand. Dalton Trans., 3900–3902 (2009)

    Google Scholar 

  70. Tropiano, M., Kilah, N.L., Morten, M., Rahman, H., Davis, J.J., Beer, P.D., Faulkner, S.: Reversible luminescence switching of a redox-active ferrocene–europium dyad. J. Am. Chem. Soc. 133, 11847 (2011)

    Article  CAS  Google Scholar 

  71. Yano, M., Matsuhira, K., Tatsumi, M., Kashiwagi, Y., Nakamoto, M., Oyama, M., Ohkubo, K., Fukuzumi, S., Misaki, H., Tsukube, H.: “ON–OFF” switching of europium complex luminescence coupled with a ligand redox process. Chem. Commun. 48, 4082–4084 (2012)

    Google Scholar 

  72. Kanazawa, K., Nakamura, N., Kobayashi, N.: High-contrast electroswitching of emission and coloration based on single–molecular fluoran derivatives. J. Phys. Chem. A 118, 6026–6033 (2014)

    CAS  Google Scholar 

  73. Kanazawa, K., Nakamura, N., Kobayashi, N.: Electroswitchable optical device enabling both luminescence and coloration control consisted of fluoran dye and 1,4-benzoquinone. Sol. Energy Mater. Sol. Cells 145, 42–53 (2016)

    Article  CAS  Google Scholar 

  74. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  75. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965)

    Article  Google Scholar 

  76. Salahub, D.R., Zerner, M.C. (eds.): The Challenge of d and f Electrons. ACS, Washington, DC (1989)

    Google Scholar 

  77. Parr, R.G., Yang, W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford, UK (1989)

    Google Scholar 

  78. Bauernschmitt, R., Ahlrichs, R.: Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996)

    Article  CAS  Google Scholar 

  79. Casida, M.E., Jamorski, C., Kasida, K.C., Salahub, D.R.: Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 108, 4439–4449 (1998)

    Article  CAS  Google Scholar 

  80. Stratmann, R.E., Scuseria, G.E., Frisch, M.J.: An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 109, 8218–8224 (1998)

    Article  CAS  Google Scholar 

  81. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A. et al.: Gaussian 09, rev A.02. Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  82. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  CAS  Google Scholar 

  83. Lee, C.T., Yang, W.T., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  84. Miehlich, B., Savin, A., Stoll, H., Preuss, H.: Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989)

    Article  CAS  Google Scholar 

  85. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  86. Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L., Windus, T.L.: 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998)

    Article  CAS  Google Scholar 

  87. Miertus, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. J. Chem. Phys. 55, 117–129 (1981)

    Google Scholar 

  88. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005)

    Article  CAS  Google Scholar 

  89. Yang, L., Ren, A.-M., Feng, J.-K., Wang, J.-F.: Theoretical investigation of optical and electronic property modulations of π-conjugated polymers based on the electron-rich 3,6-dimethoxy-fluorene unit. J. Org. Chem. 70, 3009–3020 (2005)

    Google Scholar 

  90. Zhang, X., Chi, L., Ji, S., Wu, Y., Song, P., Han, K., Guo, H., James, T.D., Zhao, J.: Rational design of d-pet phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of α-hydroxyl carboxylic acids and monosaccharide. J. Am. Chem. Soc. 131, 17452–17463 (2009)

    Article  CAS  Google Scholar 

  91. Saita, K., Nakazono, M., Zaitsu, K., Nanbu, S., Sekiya, H.: Theoretical study of photophysical properties of bisindolylmaleimide derivatives. J. Phys. Chem. A 113, 8213–8220 (2009)

    Article  CAS  Google Scholar 

  92. Wu, Y., Guo, H., Zhang, X., James, T.D., Zhao, J.: Chiral donor photoinduced-electron-transfer (d-pet) boronic acid chemosensors for the selective recognition of tartaric acids, disaccharides, and ginsenosides. Chem. –Eur. J. 17, 7632–7644 (2011)

    Google Scholar 

  93. Prasanna de Silva, A., Nimal Gunarantne, H.Q., Rice, T.E.: Proton-controlled switching of luminescence in lanthanide complexes in aqueous solution: pH sensors based on long-lived emission. Angew. Chem. Int. Ed. 35, 2116–2118 (1996)

    Article  Google Scholar 

  94. Parker, D.: Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord. Chem. Rev. 205, 109–130 (2000)

    Article  CAS  Google Scholar 

  95. Keefe, M.H., Benkstein, K.D., Hupp, J.T.: Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coord. Chem. Rev. 205, 201–228 (2000)

    Article  CAS  Google Scholar 

  96. Montalti, M., Prodi, L., Zaccheroni, N., Charbonniere, L., Douce, L., Ziessel, R.: A luminescent anion sensor based on a europium hybrid complex. J. Am. Chem. Soc. 123, 12694–12695 (2001)

    Article  CAS  Google Scholar 

  97. Hasegawa, Y., Yamamuro, M., Kanehisa, N., Kai, Y., Yanagida, S.: Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency. J. Phys. Chem. A 107, 1697–1702 (2003)

    Article  CAS  Google Scholar 

  98. Bünzli, J.-C.G., Piguet, C.: Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005)

    Article  CAS  Google Scholar 

  99. De Bettencourt-Dias, A.: Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans., 2229–2241 (2007)

    Google Scholar 

  100. Nakamura, K., Hasegawa, Y., Kawai, H., Yasuda, N., Kanehisa, N., Kai, Y., Nagamura, T., Yanagida, S., Wada, Y.: Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands. J. Phys. Chem. A 111, 3029–3037 (2007)

    Article  CAS  Google Scholar 

  101. Binnemans, K.: Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 42843–4374 (2009)

    Article  CAS  Google Scholar 

  102. De Bettencourt-Dias, A., Barber, P.S., Viswanathan, S.: Aromatic N-donor ligands as chelators and sensitizers of lanthanide ion emission. Coord. Chem. Rev. 273–274, 165–200 (2014)

    Google Scholar 

  103. Mortimer, R.J., Reynolds, J.R.: An in situ colorimetric measurement study of electrochromism in the di-n-heptyl viologen system. Displays 29, 424–431 (2008)

    Article  CAS  Google Scholar 

  104. Itaya, K., Uchida, I., Neff, V.D.: Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19, 162–168 (1986)

    Article  CAS  Google Scholar 

  105. Nassar, E.J., Goncalves, R.R., Ferrari, M., Messaddeq, Y., Ribeiro, S.J.L.: Titania-based organic–inorganic hybrid planar waveguides. J. Alloys Compd. 344, 221–225 (2002)

    Article  CAS  Google Scholar 

  106. Tan, M., Wang, G., Ye, Z., Yuan, J.: Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling. J. Lumin. 117, 20–28 (2006)

    Article  CAS  Google Scholar 

  107. Rocha, L.A., Cluffi, K.J., Sacco, H.C., Nassar, E.J.: Influence on deposition speed and stirring type in the obtantion of titania films. Mater. Chem. Phys. 85, 245–250 (2004)

    Article  CAS  Google Scholar 

  108. Wang, X.-L., Yan, B.: Ternary luminescent lanthanide-centered hybrids with organically modified titania and polymer units. Colloid Polym. Sci. 289, 423–431 (2011)

    Article  CAS  Google Scholar 

  109. Celedon, S., Quiroz, C., Gonzalez, G., Sotomayor Torres, C.M., Benavene, E.: Lanthanides–clay nanocomposites: Synthesis, characterization and optical properties. Mater. Res. Bull. 44, 1191–1194 (2009)

    Article  CAS  Google Scholar 

  110. Lezhnina, M., Benavente, E., Bentlage, M., Echevarria, Y., Klumpp, E., Kynast, U.: Luminescent hybrid material based on a clay mineral. Chem. Mater. 19, 1098–1102 (2007)

    Article  CAS  Google Scholar 

  111. Ma, Y., Wang, H., Liu, W., Wang, Q., Xu, J., Tang, Y.: Microstructure, luminescence, and stability of a europium complex covalently bonded to an attapulgite clay. J. Phys. Chem. B 113, 14139–14145 (2009)

    Article  CAS  Google Scholar 

  112. Wada, Y., Sato, M., Tsukahara, Y.: Fine control of red–green–blue photoluminescence in zeolites incorporated with rare-earth ions and a photosensitizer. Angew. Chem. Int. Ed. 45, 1925–1928 (2006)

    Article  CAS  Google Scholar 

  113. Wang, Y., Li, H., Gu, L., Gan, Q., Li, Y., Calzaferri, G.: Thermally stable luminescent lanthanide complexes in zeolite L. Microporous Mesoporous Mater. 121, 1–6 (2009)

    Article  CAS  Google Scholar 

  114. Li, P., Zhang, Y., Wang, Y., Wang, Y., Li, H.: Luminescent europium(III)-β-diketonate complexes hosted in nanozeolite L as turn-on sensors for detecting basic molecules. Chem. Commun. 50, 13680–13682 (2014)

    Article  CAS  Google Scholar 

  115. Wang, Y., Li, H.: Luminescent materials of zeolite functionalized with lanthanides. CrystEngComm 16, 9764–9778 (2014)

    Article  CAS  Google Scholar 

  116. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye–sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  117. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  CAS  Google Scholar 

  118. Ardo, S., Meyer, G.J.: Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38, 115–164 (2009)

    Article  CAS  Google Scholar 

  119. Grätzel, M.: Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009)

    Article  CAS  Google Scholar 

  120. Imahori, H., Umemiya, T., Ito, S.: Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc. Chem. Res. 42, 1809–1818 (2009)

    Article  CAS  Google Scholar 

  121. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  CAS  Google Scholar 

  122. Cummins, D., Boschloo, G., Ryan, M., Corr, D., Rao, S.N., Fitzmaurice, D.: Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B 104, 11449–11459 (2000)

    Article  CAS  Google Scholar 

  123. Bach, U., Corr, D., Lupo, D., Pichor, F., Ryan, M.: Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater. 14, 845–848 (2002)

    Article  CAS  Google Scholar 

  124. Corr, D., Bach, U., Fay, D., Kinsella, M., McAtamney, C., O’Reilly, F., Rao, S.N., Stobie, N.: Coloured electrochromic “paper-quality” displays based on modified mesoporous electrodes. Solid State Ionics 165, 315–321 (2003)

    Article  CAS  Google Scholar 

  125. Ma, C., Taya, M., Xu, C.: Flexible electrochromic device based on poly (3,4-(2,2-dimethylpropylenedioxy) thiophene). Electrochim. Acta 54, 598–605 (2008)

    Article  CAS  Google Scholar 

  126. Freitag, M., Galoppini, E.: Cucurbituril complexes of viologens bound to TiO2 films. Langmuir 26, 8262–8269 (2010)

    Article  CAS  Google Scholar 

  127. Kanazawa, K., Nakamura, K., Kobayashi, N.: Electrochemical luminescence modulation in a Eu(III) complex-modified TiO2 electrode. J. Mater. Chem. C 3, 7135–7142 (2015)

    Article  CAS  Google Scholar 

  128. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  129. Szacilowski, K.: Digital information processing in molecular systems. Chem. Rev. 108, 3481–3548 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kanazawa, K., Nakamura, K., Kobayashi, N. (2017). Control of Emission and Coloration in Electrochemical Systems and Its Applications. In: Miomandre, F., Audebert, P. (eds) Luminescence in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-49137-0_6

Download citation

Publish with us

Policies and ethics