Skip to main content
Log in

Compact design of four-phase fractional-order oscillator with independent phase and frequency control

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This article presents a compact design of four-phase fractional-order sinusoidal oscillator employing three fractional capacitors and three differential voltage–current conveyors. The presented fractional oscillator enjoys the freedom of independent phase and frequency control. In the beginning of this work, the condition of oscillation and the frequency of oscillation have been derived since the traditional Barkhausen criterion does not guarantee the sustained oscillation in the fractional-order oscillator. Further, the dependencies of oscillation condition, frequency and phase on various circuit parameters have been studied explicitly. Stability analysis has also been performed by analysing pole-zero plots in fractional W-plane. Besides this, non-ideal characteristics and their effects on the oscillation frequency have also been studied by Monte Carlo analysis. At the end, the proposed oscillator has been simulated in PSpice environment using 0.5-μm CMOS model, to see the practical aspects of the presented design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R Caponetto, G Dongola, L Fortuna and I Petras Fractional Order System-Modeling and Control Applications (World Scientific Publishing: Singapore) (2010)

    Book  Google Scholar 

  2. N Goel and K Singh Int. J. Electron. Commun. (AEU) 70 138 (2016)

    Article  Google Scholar 

  3. K Moddy, A G Radwan, K N Salama, S Momani and I Hashim Comput. Math. Appl. 34 3329 (2012)

    Article  Google Scholar 

  4. V Martynyuka, M Ortigueira, M Fedula and O Savenko Int. J. Electron. Commun. 91 118 (2018)

    Google Scholar 

  5. G S Visweswaran, P Varshney and M Gupta IEEE Trans. Circuits Syst. II: Express Briefs 58 179 (2011)

    Google Scholar 

  6. A G Radwan, A M Soliman, and A S Elwakil J. Circuit Syst. Comput. 17 55 (2008).

  7. E Demirci and N Ozalp J. Comput. Appl. Math. 236 2754 (2012)

    Article  MathSciNet  Google Scholar 

  8. V D Santis, V Martynyuk, A Lampasi, M Fedula and M D Ortigueira Int. J. Electron. Commun. 78 238 (2017)

    Google Scholar 

  9. B Maundy, A S Elwakil and T Freeborn Signal Process. 91 484 (2011)

    Google Scholar 

  10. A B Malinowska, T Odzijewicz and D F M Torres Advanced Methods in the Fractional Calculus of Variations (Springer Briefs in Applied Sciences and Technology) (2015)

  11. M D Ortigueira Fractional Calculus for Scientists and Engineers (Portugal: Springer Science & Business Media) (2011)

  12. M Ortigueira and J Machado Fract. Fract. 1 3 (2017)

    Article  Google Scholar 

  13. M D Ortigueira and J A T Machado J. Comput. Phys. 293 4 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. M Sugi, Y Hirano, Y F Miura and K Saito IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 82 1627 (1999)

    Google Scholar 

  15. M C Tripathy, D Mondal, K Biswas and S Sen Int. J. Circuit Theory Appl. 43 1183 (2014)

    Article  Google Scholar 

  16. D Mondal and K Biswas IEEE Trans. Dev. Mater. Reliab. 13 73 (2013)

    Article  Google Scholar 

  17. AM Elshurafa, MN Almadhoun, KN Salama and HN Alshareef Appl. Phys. Lett. 102 (2013)

  18. V Martynyuk and M Ortigueira Signal Process. 107 355 (2015)

    Article  Google Scholar 

  19. M E Fouda, A Soltan, A G Radwan and A M Soliman Analog Integr. Circuits Signal Process. 87 301 (2016)

    Google Scholar 

  20. D Wen, Y Zhou and X Li Front. Aging Neurosci. 7 54 (2015)

    Google Scholar 

  21. S K Rai and M Gupta Analog Integr. Circuits Signal Process. 86 307 (2016)

    Article  Google Scholar 

  22. S Kumari and M Gupta Analog Integr.Circuits Signal Process. 93 489 (2017)

    Article  Google Scholar 

  23. L A Said, A G Radwan, A H Madian and A M Soliman Int. J. Electron. Commun. (AEU) 69 988 (2015)

    Google Scholar 

  24. L A Said, A G Radwan, A H Madian and A M Soliman Circuits Syst. Signal Process 35 3086 (2016)

    Article  Google Scholar 

  25. L A Said, A G Radwan, A H Madian and A M Soliman Microelectron. J. 55 40 (2016)

    Article  Google Scholar 

  26. M E Fouda, A Soltan, A G Radwan and A M Soliman 21st IEEE International Conference on Electronics, Circuits and Systems (France: ICECS) (2014)

  27. D Prasad, J Ahmad and M Srivastava Indian J. Phys. 92 49 (2018)

    Article  ADS  Google Scholar 

  28. A M Soliman J. Circuits Syst. Comput. 18 857 (2009)

  29. E Yuce IEEE Trans. Instrum. Measur. 58 2216 (2009)

  30. M A Ibrahim, S Minaei and H Kuntman Int. J. Electron. Commun. (AEU) 59 311 (2005)

    Article  Google Scholar 

  31. J W Horng Int. J. Electron. 99 153 (2012)

  32. A S Elwakil and W Ahmed Int. J. Electron. 89 197 (2002)

    Article  Google Scholar 

  33. A G Radwan, A M Soliman, A S Elwakil and A Sedeek Chaos Solitons Fract. 40 2317 (2009)

    Article  ADS  Google Scholar 

  34. I Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Berlin: Springer) (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Gupta, M. & Upadhyay, D.K. Compact design of four-phase fractional-order oscillator with independent phase and frequency control. Indian J Phys 93, 891–901 (2019). https://doi.org/10.1007/s12648-018-1341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1341-y

Keywords

PACS No.

Navigation