Skip to main content
Log in

Stability analysis of fractional-order Colpitts oscillators

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

A Correction to this article was published on 07 September 2019

This article has been updated

Abstract

The mathematical formulae of six topologies of fractional-order Colpitts oscillator are introduced in this paper. Half of these topologies are based on MOS transistor, and the other half is based on BJT transistor. The design procedure for all of these topologies is proposed and summarized for each one. Stability analysis is very crucial in oscillators’ design, as oscillators should have its poles on the imaginary axis to obtain a sustained oscillation. Hence, determining the factors that control the oscillator’s stability is very important. An intensive study of the stability of Colpitts oscillator is introduced, including different cases for all topologies. Additionally, circuit simulation is conducted using Valsa’s emulator of the fractional-order capacitor for validating the mathematical formulae and the stability criteria. Experimental work is also included to verify the mathematical findings and circuit simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 07 September 2019

    Unfortunately, in the original version of the article some typos occurred.

References

  1. Kumar, A., & Kumar, V. (2017). Hybridized ABC-GA optimized fractional order fuzzy pre-compensated fopid control design for 2-DOF robot manipulator. AEU-International Journal of Electronics and Communications, 79, 219–233.

    Article  Google Scholar 

  2. Dimeas, I., Petras, I., & Psychalinos, C. (2017). New analog implementation technique for fractional-order controller: A DC motor control. AEU-International Journal of Electronics and Communications, 78, 192–200.

    Article  Google Scholar 

  3. Freeborn, T. J. (2013). A survey of fractional-order circuit models for biology and biomedicine. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 416–424.

    Article  Google Scholar 

  4. Yousri, D., AbdelAty, A. M., Said, L. A., AboBakr, A., & Radwan, A. G. (2017). Biological inspired optimization algorithms for cole-impedance parameters identification. AEU-International Journal of Electronics and Communications, 78, 79–89.

    Article  Google Scholar 

  5. Allagui, A., Freeborn, T. J., Elwakil, A. S., Fouda, M. E., Maundy, B. J., Radwan, A. G., et al. (2018). Review of fractional-order electrical characterization of supercapacitors. Journal of Power Sources, 400, 457–467.

    Article  Google Scholar 

  6. Allagui, A., Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2018). Capacitive behavior and stored energy in supercapacitors at power line frequencies. Journal of Power Sources, 390, 142–147.

    Article  Google Scholar 

  7. Elwakil, A. S., Radwan, A. G., Freeborn, T. J., Allagui, A., Maundy, B. J., & Fouda, M. (2016). Low-voltage commercial super-capacitor response to periodic linear-with-time current excitation: A case study. IET Circuits, Devices & Systems, 11(3), 189–195.

    Article  Google Scholar 

  8. Bhrawy, A., & Zaky, M. A. (2017). Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Computers & Mathematics with Applications, 73(6), 1100–1117.

    Article  MathSciNet  Google Scholar 

  9. Mohammadzadeh, A., & Ghaemi, S. (2017). Synchronization of uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton type-2 fuzzy neural network and its application to secure communication. Nonlinear Dynamics, 88(1), 1–19.

    Article  Google Scholar 

  10. Tolba, M. F., AbdelAty, A. M., Soliman, N. S., Said, L. A., Madian, A. H., Azar, A. T., et al. (2017). Fpga implementation of two fractional order chaotic systems. AEU-International Journal of Electronics and Communications, 78, 162–172.

    Article  Google Scholar 

  11. Baleanu, D., Golmankhaneh, A. K., & Golmankhaneh, A. K. (2010). On electromagnetic field in fractional space. Nonlinear Analysis: Real World Applications, 11(1), 288–292.

    Article  MathSciNet  Google Scholar 

  12. Ismail, S. M., Said, L. A., Radwan, A. G., Madian, A. H., Abu-ElYazeed, M. F., & Soliman, A. M. (2015). Generalized fractional logistic map suitable for data encryption. In: 2015 International conference on science and technology (TICST), IEEE, pp. 336–341.

  13. Khateb, F., Kubánek, D., Tsirimokou, G., & Psychalinos, C. (2016). Fractional-order filters based on low-voltage ddccs. Microelectronics Journal, 50, 50–59.

    Article  Google Scholar 

  14. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2016). Fractional-order inverting and non-inverting filters based on CFOA. In 39th International conference on telecommunications and signal processing (TSP), IEEE, pp. 599–602.

  15. Radwan, A. G., Soliman, A., Elwakil, A. S., & Sedeek, A. (2009). On the stability of linear systems with fractional-order elements. Chaos, Solitons & Fractals, 40(5), 2317–2328.

    Article  Google Scholar 

  16. Semary, M. S., Radwan, A. G., & Hassan, H. N. (2016). Fundamentals of fractional-order LTI circuits and systems: Number of poles, stability, time and frequency responses. International Journal of Circuit Theory and Applications, 44(12), 2114–2133.

    Article  Google Scholar 

  17. Sedra, A. S., & Smith, K. C. (2016). Microelectronic circuits. Oxford: Oxford University Press.

    Google Scholar 

  18. Radwan, A. G., Elwakil, A. S., & Soliman, A. M. (2008). Fractional-order sinusoidal oscillators: Design procedure and practical examples. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(7), 2051–2063.

    Article  MathSciNet  Google Scholar 

  19. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples. International Journal of Circuit Theory and Applications, 36(4), 473–492.

    Article  Google Scholar 

  20. Kubánek, D., Khateb, F., Tsirimokou, G., & Psychalinos, C. (2016). Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors. Circuits, Systems, and Signal Processing, 35(6), 2003–2016.

    Article  MathSciNet  Google Scholar 

  21. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2016). Two-port two impedances fractional order oscillators. Microelectronics Journal, 55, 40–52.

    Article  Google Scholar 

  22. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2016). Fractional order oscillator design based on two-port network. Circuits, Systems, and Signal Processing, 35(9), 3086–3112.

    Article  MathSciNet  Google Scholar 

  23. Kartci, A., Herencsar, N., Koton, J., Brancik, L., Vrba, K., Tsirimokou, G., & Psychalinos, C. (2017). Fractional-order oscillator design using unity-gain voltage buffers and otas. In IEEE 60th International midwest symposium on circuits and systems (MWSCAS), IEEE, pp. 555–558.

  24. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2017). Three fractional-order-capacitors-based oscillators with controllable phase and frequency. Journal of Circuits Systems and Computers, 26(10), 1750160.

    Article  Google Scholar 

  25. Elwy, O., Hamed, E. M., Rashad, S. H., AbdelAty, A. M., Said, L. A. & Radwan A. G. (2018). On the approximation of fractional-order circuit design. In Fractional order systems, Elsevier, pp. 239–270.

  26. Elwy, O., Said, L. A., Madian, A. H., & Radwan, A. G. (2019). All possible topologies of the fractional-order Wien oscillator family using different approximation techniques. Circuits, Systems, and Signal Processing. https://doi.org/10.1007/s00034-019-01057-6.

    Article  Google Scholar 

  27. Comedang, T., & Intani, P. (2016). Current-controlled CFTA based fractional order quadrature oscillators. Circuits and Systems, 7(13), 4201–4212.

    Article  Google Scholar 

  28. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2017). Generalized family of fractional-order oscillators based on single CFOA and RC network. In 2017 6th International conference on modern circuits and systems technologies (MOCAST), IEEE, pp. 1–4.

  29. Radwan, A. (2012). Stability analysis of the fractional-order RL\(\beta\)C\(\alpha\) circuit. Journal of Fractional Calculus and Applications, 3(1), 1–15.

    Google Scholar 

  30. Said, L. A., Radwan, A. G., Madian, A. H., & Soliman, A. M. (2018). Survey on two-port network-based fractional-order oscillators. In Fractional order systems, Elsevier, pp. 305–327.

  31. Pang, D., Jiang, W., Liu, S., & Jun, D. (2019). Stability analysis for a single degree of freedom fractional oscillator. Physica A: Statistical Mechanics and Its Applications, 523, 498–506.

    Article  MathSciNet  Google Scholar 

  32. Elwakil, A. S. (2009). On the two-port network classification of colpitts oscillators. IET Circuits, Devices & Systems, 3(5), 223–232.

    Article  Google Scholar 

  33. Elwakil, A. S., & Al-Radhawi, M. A. (2011). All possible second-order four-impedance two-stage colpitts oscillators. IET Circuits, Devices & Systems, 5(3), 196–202.

    Article  Google Scholar 

  34. Valsa, J., Dvorak, P., & Friedl, M. (2011). Network model of the CPE. Radioengineering, 20(3), 619–626.

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Science and Technology Development Fund (STDF) for funding the project # 25977 and Nile University for facilitating all procedures required to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. Madian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, L.A., Elwy, O., Madian, A.H. et al. Stability analysis of fractional-order Colpitts oscillators. Analog Integr Circ Sig Process 101, 267–279 (2019). https://doi.org/10.1007/s10470-019-01501-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01501-2

Keywords

Navigation