Skip to main content
Log in

A new nonlinear dopant kinetic model of memristor and its application

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

To improve the effectiveness of memristor model in complex network, the drift model of memristor is further optimized. In this paper, based on both the existing nonlinear doping kinetic model and sinusoidal function, a new model is proposed, which agrees with the five criteria for describing the migration characteristics of nonlinear dopant. Secondly, to improve the flexibility of the new model, two in-built control parameters are introduced, and it is verified by using the coupled variable-resistor model proposed by HP research team. The simulation results show that the new model is well matched with the authoritative memristor model. At the same time, by constructing the Simulink model of memristor we have verified the effectiveness of the new model. Finally, the new model is applied to the three-node Hopfield neural network, and the dynamic behaviors of this network have been investigated. In particular, we have introduced an electromagnetic induction coefficient to describe the possible electromagnetic field effect caused by signal transmission in the network. The results will provide a new idea for the memristor to be widely used in complex network, artificial synapse and many other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L O Chua IEEE Trans. Circuit Theory. 18 507 (1971)

  2. M Itoh and L O Chua Int. J. Bifurc. Chaos. 18 3183 (2008)

    Article  Google Scholar 

  3. B C Bao, F W Hu, Z Liu and J Z Xu Chin. Phys. B. 23 303 (2014)

    Google Scholar 

  4. B C Bao, P Jiang, H G Wu and F W Hu Nonlinear Dyn. 79 2333 (2015)

    Article  Google Scholar 

  5. S H Jo, T Chang, I Ebong, B Bhadviya, P Mazumder, and W Lu Nano Lett. 10 1297 (2010)

  6. J P Carbajal, J Dambre, M Hermans, and B Schrauwen Neural Comput. 27 1 (2014)

  7. S N Truong, K V Pham, W Yang, Kyeong-Sik Min, Y Abbas, C J Kang, S Shin and K Pedrotti J. Korean Phys. Soc. 69 640 (2016)

    Google Scholar 

  8. D B Strukov, G S Snider, D R Stewart and R S Williams Nature 453 80 (2008)

    Google Scholar 

  9. Y J Joshua, F Miao, MD Pickett, DA Ohlberg, DR Stewart, CN Lau and RS Williams Nanotechnology 20 1 (2009)

    Google Scholar 

  10. A Lancichinetti, M Kivelä, J Saramäki and Fortunato S, Plos One 5 e11976 (2010)

    Article  ADS  Google Scholar 

  11. F M Bayat and S B Shouraki, Neural Comput. Appl. 26 67 (2015)

    Article  Google Scholar 

  12. F Xu, J Q Zhang, T T fang, S F Huang and M S Wang Nonlinear Dyn. 92 1395 (2018)

  13. W Zhang, C Li, T Huang and X He IEEE T Neural Netw. Learn. 26 3308 (2015)

    ADS  Google Scholar 

  14. T Prodromakis, B P Peh, C Papavassiliou and C Toumazou IEEE Trans. Electron Dev. 58 3099 (2011)

    Article  ADS  Google Scholar 

  15. Y N Joglekar and S J Wolf Eur. J Phys. 30 661 (2009)

    Article  Google Scholar 

  16. Z Biolek, D Biolek and V Biolkova Radioengineering 18 210 (2009)

    Google Scholar 

  17. P Bansal and B Raj J. Comput. Theor. Nanosci. 14 2319 (2017)

    Article  Google Scholar 

  18. J Yu, X Mu, X Xi and S. Wang Radioengineering 22, 969 (2013)

    Google Scholar 

  19. J Zha, H Huang and Y. Liu IEEE Trans. Circuits-II 63 423 (2016)

    Google Scholar 

  20. T. D. Dongale, P. J. Patil, N. K. Desai,P. P. Chougule, S. M. Kumbhar, P. P. Waifalkar, P. B. Patil,R. S. Vhatkar, M. V. Takale, P. K. Gaikwad and R. K. Kamat Nano Converg. 3 16 (2016)

  21. E. Gale, arXiv:1106.3170v1 (cond-mat.mtrl-sci), unpublished

  22. L S Liang, J Q Zhang, L Z Liu, M S Wang, B H Wang Chin. Phys. Lett. 31 050502 (2014)

    Article  ADS  Google Scholar 

  23. B C Bao, H Qian, Q Xu, M Chen, J Wang and Y J Yu Front. Comput. Neurosc. 11 1 (2017)

    Google Scholar 

  24. B C Bao, H Qian, J Wang, Q Xu, M Chen, H G Wu and Y J Yu Nonlinear Dyn. 10 1 (2017)

    Google Scholar 

  25. X S Yang and Y Huang Chaos 16 033114 (2006)

    Article  ADS  Google Scholar 

  26. Q Li, X S Yang and F Yang Neurocomputing 67 275 (2005)

    Google Scholar 

  27. Q Li, S Tang, H Zeng and T Zhou Nonlinear Dyn. 78 1087 (2014)

    Article  Google Scholar 

  28. J Ma and J Tang Sci. China Technol. Sc. 58 2038 (2015)

    Article  Google Scholar 

  29. M Lv, C Wang, G Ren, J Ma and X Song Nonlinear Dyn. 85 1479 (2016)

    Article  Google Scholar 

  30. F Xu, J Q Zhang, M Jin, S F Huang and T T Fang Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4393-9

  31. J Ma and J Tang Nonlinear Dyn. 20 1 (2017)

    Google Scholar 

  32. Y Wang, J Ma, Y Xu, F Wu and P Zhou Int. J Bifurc. Chaos 27 1750030 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The project supported by the Natural Science Foundation of Anhui Province, China (No. 1508085MA15), the Key project of cultivation of leading talents in Universities of Anhui Provence (No. gxbjZD2016014), the Innovation and practice research project of graduate students of Anhui Normal University, China (No. 2017cxsj045), the project of Academic and technical leaders candidate of Anhui Province (2017H117), and the Natural Science Foundation of the Anhui Higher Education Institutions (No. KJ2017A331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Q Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Zhang, J.Q., Huang, S.F. et al. A new nonlinear dopant kinetic model of memristor and its application. Indian J Phys 93, 765–772 (2019). https://doi.org/10.1007/s12648-018-1330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1330-1

Keywords

PACS Nos.

Navigation