Skip to main content
Log in

Strain effect on the spin relaxation rate of a two-dimensional GaAs quantum dot

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The strain effect on the spin relaxation rate of a two-dimensional GaAs quantum dot has been investigated within the effective mass approximation. For this purpose, first we have calculated the energy levels and wave functions of the system in the presence of Bychkov–Rashba and Dresselhaus terms and strain-dependent term by using the diagonalization method. Then, we have computed the spin relaxation rate by Fermi’s Golden rule. The results show that: (i) there is a maximum in spin relaxation rate for a special magnetic field, that is corresponding to the anti-crossing magnetic field (Bac). (ii) The Bac does not depend on the strain. (iii) There is a minimum in spin relaxation rate at the special strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I Zutic, J Fabian and S Das Sarma Rev. Mod. Phys. 76 323 (2004)

    Article  ADS  Google Scholar 

  2. S A Wolf et al Science 294 1488 (2001)

    Article  ADS  Google Scholar 

  3. S Datta and B Das Appl. Phys. Lett. 56 665 (1990)

    Article  ADS  Google Scholar 

  4. J Schliemann, J C Egues and D Loss Phys. Rev. Lett. 90 146801 (2003)

    Article  ADS  Google Scholar 

  5. E I Rashba and A L Efros Phys. Rev. Lett. 91 126405 (2003)

    Article  ADS  Google Scholar 

  6. L S Levitov and E I Rashba Phys. Rev. B 67 115324 (2003)

    Article  ADS  Google Scholar 

  7. M I Dyakonov and V Y Kachorovskii Sov. Phys. Solid State 13 3023 (1971)

    Google Scholar 

  8. M I Dyakonov and V Y Kachorovskii Phys. Semicond. 20 110 (1986)

    Google Scholar 

  9. A V Khaetskii and Y V Nazarov Phys. Rev. B 64 125316 (2001)

    Article  ADS  Google Scholar 

  10. A V Khaetskii and Y V Nazarov Phys. Rev. B 61 12639 (2000)

    Article  ADS  Google Scholar 

  11. S I Erlingsson and Y V Nazarov Phys. Rev. B 66 155327 (2002)

    Article  ADS  Google Scholar 

  12. G Burkard, D Loss and D P Di Vincenzo Phys. Rev. B 59 2070 (1999)

    Article  Google Scholar 

  13. A V Khaetskii, D Loss and L Glazman Phys. Rev. Lett. 88 186802 (2002)

    Article  ADS  Google Scholar 

  14. I A Merkulov, A L Efros and M Rosen Phys. Rev. B 65 205309 (2002)

    Article  ADS  Google Scholar 

  15. B I Halperin et al Phys. Rev. Lett. 86 2106 (2001)

    Article  ADS  Google Scholar 

  16. I L Aleiner and V I Falko Phys. Rev. Lett. 87 256801 (2001)

    Article  ADS  Google Scholar 

  17. D Loss and D P Di Vincenzo Phys. Rev. A 57 120 (1998)

    Article  ADS  Google Scholar 

  18. J Weis, R J Haug, K V Klitzing and K Ploog Phys. Rev. Lett. 71 4019 (1993)

    Article  ADS  Google Scholar 

  19. V Fock Z. Phys. 47 446 (1928)

  20. C G Darwin Proc. Camb. Philos. Soc. 27 86 (1931)

    Article  ADS  Google Scholar 

  21. R D Sousa and S Das Sarma Phys. Rev. B 68 155330 (2003)

    Article  ADS  Google Scholar 

  22. M V Rodriguez, A Puente and L Serra Phys. Rev. B 69 85306 (2004)

    Article  Google Scholar 

  23. C F Destefani, S E Ulloa and G E Marques Phys. Rev. B 69 125302 (2004)

    Article  Google Scholar 

  24. C F Destefani, S E Ulloa and G E Marques Phys. Rev. B 70 205315 (2004)

    Article  Google Scholar 

  25. M V Rodriguez, A Puente, L Serra and E Lipparini Phys. Rev. B 66 235322 (2002)

    Article  Google Scholar 

  26. C F Destefani and S E Ulloa Phys. Rev. B 71 161303(R) (2005)

    Article  ADS  Google Scholar 

  27. O Voskoboynikov, C P Lee and O Tretyak Phys. Rev. B 63 165306 (2001)

    Article  ADS  Google Scholar 

  28. W H Kuan, C S Tang and W Xu J. Appl. Phys. 95 6368 (2004)

    Article  ADS  Google Scholar 

  29. M V Rodrıguez, A Puente and L Serra Phys. Rev. B 69 153308 (2004)

    Article  Google Scholar 

  30. A V Chaplik and L I Magarill Phys. Rev. Lett. 94 126402 (2006)

    Article  ADS  Google Scholar 

  31. O Voskoboynikov, O Bauga, C P Lee and O Tretyak J. Appl. Phys. 94 5891 (2003)

    Article  ADS  Google Scholar 

  32. J H Van Vleck Phys. Rev. 57 426 (1940)

    Article  ADS  Google Scholar 

  33. M V Rodrıguez Phys. Rev. B 70 033306 (2004)

    Article  Google Scholar 

  34. E N Bulgakov and A F Sadreev JETP Lett. 73 505 (2001)

    Article  ADS  Google Scholar 

  35. E Tsitsishvili, G S Lozano and A O Gogolin Phys. Rev. B 70 115316 (2004)

    Article  Google Scholar 

  36. S Debald and C Emary Phys. Rev. Lett. 94 226803 (2005)

    Article  ADS  Google Scholar 

  37. S Tarucha, D G Austing, T Honda, R J Van der Haged and L P Kouwenhoven Phys. Rev. Lett. 77 3613 (1996)

    Article  ADS  Google Scholar 

  38. R Khordad J. Magn. Magn. Mater. 449 510 (2018)

  39. E Dehghan, D Sanavi Khoshnoud and A S Naeimi Physica E 100 7 (2018)

    Article  Google Scholar 

  40. R Khordad Superlattice Microstruct. 110 146 (2017)

  41. R Khordad and H R Rastegar Sedehi Solid State Commun. 269 118 (2018)

    Article  ADS  Google Scholar 

  42. P Kumar and P Chand J. Alloys Compd. 748 504 (2018)

    Article  Google Scholar 

  43. C Li et al Physica E 97 392 (2018).

  44. X Yang, S Wu, J Xu, B Cao and A C To Physica E 96 46 (2018)

    ADS  Google Scholar 

  45. X Liu et al Physica E 87 6 (2017)

    Article  ADS  Google Scholar 

  46. R Khordad and H Bahramiyan Commun. Theor. Phys. 65 87 (2016)

    Article  ADS  Google Scholar 

  47. E I Rashba Fiz. Tverd. Tela (Leningrad) 2 1224 (1960)

  48. Y A Bychkov and E I Rashba J. Phys. C 17 6039 (1984)

    Article  ADS  Google Scholar 

  49. G Dresselhaus Phys. Rev. 100 580 (1955)

    Article  ADS  Google Scholar 

  50. M I Dyakonov and V.Y. Kachorovskii, Fiz. Tekh. Poluprovodn. (S-Peterburg) 20 178 (1986)

  51. G I Bir and G E Pikus Fiz. Tverd. Tela (Leningrad) 3 3050 (1961)

    Google Scholar 

  52. J B Miller et al Phys. Rev. Lett. 90 76807 (2003)

    Article  ADS  Google Scholar 

  53. W Knap et al Phys. Rev. B 53 3912 (1996)

    Article  ADS  Google Scholar 

  54. G D Mahan Many-Particle Physics (New York: Kluwer) (2000)

  55. S W Chang and S L Chuang Phys. Rev. B 72 115429 (2005)

    Article  ADS  Google Scholar 

  56. J Ghosh, D Osintsev, V Sverdlov and S Selberherr Microelectron. Eng. 147 89 (2015)

    Article  Google Scholar 

  57. D Osintsev, Z Stanojevic, O Baumgartner, V Sverdlov and S Selberherr AIP Conference Proceedings 1566 p 317 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bahramiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramiyan, H. Strain effect on the spin relaxation rate of a two-dimensional GaAs quantum dot. Indian J Phys 93, 361–366 (2019). https://doi.org/10.1007/s12648-018-1302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1302-5

Keywords

PACS Nos.

Navigation