Skip to main content
Log in

Reduced A–B super exchange interaction in Sm3+–Gd3+-doped Mn–Zn ferrites due to high energy gamma irradiation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We report the effect of gamma irradiation on structural and magnetic properties of \({\text{Mn}}^{2 + }_{0.4} {\text{Zn}}^{2 + }_{0.6} {\text{Sm}}^{3 + }_{x} {\text{Gd}}^{3 + }_{y} {\text{Fe}}^{3 + }_{2 - (x + y)} {\text{O}}_{4}\) (where x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) ceramics prepared by self-propagating high-temperature synthesis method using glucose and urea as fuels. The synthesized samples are characterized through X-ray diffractometer (XRD) and vibration sample magnetometer at room temperature before and after gamma irradiation. The XRD patterns of before irradiation samples reveal the formation of polycrystalline, mixed spinel cubic structure. The mixed (impurity) phases are identified as Fe2O3, SmFeO3 and GdFeO3, and the amount of these residual phases is comparatively less after gamma irradiation. Lattice parameter is found to be increasing with increasing Sm3+ and Gd3+ concentration is observed after gamma irradiation. This is due to the irradiation of ionizing gamma radiation with the material which gives rise to the production of lattice defect and then the displacing of atoms from their equilibrium position. The magnetic properties reveal that saturation magnetization (Ms), remnant (Mr), remnant ration (Mr/Ms), coercivity (Hc), magneton number (ηB), anisotropy constant (K) have been decreasing with increasing Sm3+ and Gd3+ concentration before and after gamma irradiation. This is due to breaking of ferrimagnetic ordering, surface state pinning and cation inversion of the materials. Hence, our results propose the good radiation stability of the samples when compared to reported material stability in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M M Eltabey, I A Ali, H E Hassan and M N H Comsan J. Mater. Sci. 46 2294 (2011)

    Article  ADS  Google Scholar 

  2. S P Gokov, V T Gritsyna, V I Kasilov, S S Kochetov, Y G Kazarinov Prob. Atom. Sci. Technol. 81 52 (2009)

    Google Scholar 

  3. V Jagadeesha Angadi, B Rudraswamy, E Melagiriyappa, Y Shivaraj and S Matteppanavar Indian J. Phys. 90 881 (2016)

    Article  ADS  Google Scholar 

  4. V J Angadi, AV Anupama, R Kumar, H K Choudhary, S Matteppanavar, H M Somashekarappa, B Rudraswamy and B Sahoo Mater. Chem. Phys. 199 313 (2017)

    Article  Google Scholar 

  5. V Jagadeesha Angadi, A V Anupama, R Kumar, H M Somashekarappa, S Matteppanavar, B Rudraswamy and B Sahoo Ceram. Int. 43 523 (2017)

    Article  Google Scholar 

  6. V Jagadeesha Angadi, A V Anupama, R Kumar, H M Somashekarappa, K Praveena, B Rudraswamy and B Sahoo, Ceram. Int. l42 15933 (2016)

  7. O M Hemeda Phase Trans. 51 87 (1994)

    Article  Google Scholar 

  8. N Z Darwish, O M Hameda and M I Abd El-Ati Appl. Radiat. Isot. 45 445 (1994)

    Article  Google Scholar 

  9. V Jagadeesha Angadi, B Rudraswamy, K Sadana, S Ramanamurthy and K Praveena, J. Alloys Compd. 256 5 (2016)

    Article  Google Scholar 

  10. A Kumar, P S Rana, M S Yadav and R P Pant Ceram. Int. 41 1297 (2015)

    Article  Google Scholar 

  11. P Samolia, L Sacarescu, A I Borhan, D Timpu, M Grigoras, N Lupu, M Zaltariov and V Harabagiu J. Magn. Magn. Mater. 378 92 (2015)

    Article  ADS  Google Scholar 

  12. M M Eltabey, W R Agami and H T Mohsen, J. Adv. Res. 5 601 (2014)

    Google Scholar 

  13. Z Peng, X Fu, H Ge, Z Fu, C Wang, L Qi and H Miao J. Magn. Magn. Mater. 223 2513 (2011)

    Article  ADS  Google Scholar 

  14. R N Panda, J C Shih and T S Chin J. Magn. Magn. Mater. 257 79 (2003)

    Article  ADS  Google Scholar 

  15. A B Gadkari, T J Shinde and P N Vasambekar Mater. Charact. 60 1328 (2009)

    Article  Google Scholar 

  16. N Millot, S L Gallet, D Aymes, F Bernard and F Grin J. Eur. Ceram. Soc. 27 921 (2007)

    Article  Google Scholar 

  17. V Jagadeesha Angadi, S P Kubrin, D A Sarychev, S Matteppanavar, B Rudraswamy, H-L Liu and K Praveena J.Magn. Magn. Mater. 441 348 (2017)

    Article  ADS  Google Scholar 

  18. V Jagadeesha Angadi, B Rudraswamy, K Sadhana, S Ramana Murthy and K Praveena J. Alloys Compd. 656 5 (2016)

    Article  Google Scholar 

  19. T A S Ferreira, J C Waerenborgh, M H R M Mendonça, M R Nunes and F M Costaa Solid State Sci 5 383 (2003)

    Article  ADS  Google Scholar 

  20. D Q Tang, D J Zang and H Ai Chem. Lett. 35 1238 (2006)

    Article  Google Scholar 

  21. M K Shobana, V Rajendran, M Jeyasubramanian and N Suresh Kumar Mater. Lett. 612 2616 (2007)

    Article  Google Scholar 

  22. S Nasir and M Anis-ur-Rehman Phys. Scr. 84 25603 (2011)

    Article  Google Scholar 

  23. V J Angadi, A V Anupama, R Kumar, H K Choudhary, S Matteppanavar, H M Somashekarappa, B Rudraswamy and B Sahoo Mater. Chem. Phys. 199 313 (2017)

    Article  Google Scholar 

  24. R A Young (ed.) The Rietveld Method. International Union of Crystallography. Oxford University Press, 298 (1993)

  25. E C Stoner and E P Wohlfarth Philos. Trans. R. Soc. Lond. 240 599 (1948)

    Article  ADS  Google Scholar 

  26. B J Madhu, V Jagadeesha Angadi, H Mallikarjuna, S O Manjunatha, B Shruthi and R Madhu Kumar Adv. Mater. Res. 584 299 (2012)

    Article  Google Scholar 

  27. V Jagadeesha Angadi, B Rudraswamy, E Melagiryappa, H M Somashekarappa and H Nagabhushana AIP Conf. Proc. 1591 296 (2014)

    Article  ADS  Google Scholar 

  28. A Karim, S E Shirsath, S J Shukla and K M Jadhav Nucl. Instr. Methods Phys Res B 268 2706 (2010)

    Article  ADS  Google Scholar 

  29. V G Patil, S E Shirsath, S D More, S J Shukla and K M Jadhav J. Alloys. Compd. 488 199 (2009)

    Article  Google Scholar 

  30. A Karim, S E Shisath, S J Shukla and K M Jadhav Nucl. Instr. Methods Phys. Res. B 268 2706 (2010)

    Article  ADS  Google Scholar 

  31. M L Mane, S E Shirsath, V N Dhage and K M Jadhav Nucl. Instr. Methods Phys. Res. B 269 2026 (2011)

    Article  ADS  Google Scholar 

  32. S Giri, S Samanta, S Maji, S Ganguli and A Bhumik J. Magn. Magn. Mater. 285 296 (2005)

    Article  ADS  Google Scholar 

  33. R Topkaya, A Baykal and A Demir J. Nanoparticle Res. 15 1359 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Jagadeesha Angadi or K. Praveena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagadeesha Angadi, V., Matteppanavar, S., Maramu, N. et al. Reduced A–B super exchange interaction in Sm3+–Gd3+-doped Mn–Zn ferrites due to high energy gamma irradiation. Indian J Phys 93, 169–174 (2019). https://doi.org/10.1007/s12648-018-1285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1285-2

Keywords

PACS Nos

Navigation