Skip to main content
Log in

Dust ion acoustic double layer in the presence of superthermal electrons

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The existence of a dust ion acoustic double layer in a collisionless, un-magnetized, multi-component plasma is reported here. The plasma model consists of ions, negatively charged dust particles and two components of superthermal electrons. By following Sagdeev potential and reductive perturbation method, the electrostatic double layer of negative polarity is shown to exist in small-amplitude regime. From the analytical study, it is observed that the amplitude of the double layer depends upon various parameters of the superthermal electrons as well as on the dust concentration. The model considered here has a good match with the data obtained from Cassini spacecraft for outer magnetosphere of Saturn (~ 14 Rs, Rs being the radius of Saturn). So, the results obtained from this study are useful for understanding the nature of the plasma waves in Saturn magnetosphere .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Maksimovic, S P Gary and R M Skoug J. Geophys. Res. 105 18337 (2000)

    Article  ADS  Google Scholar 

  2. E E Antonova, N O Ermakova, M V Stepanova and M V Teltzov Adv. Space Res. 31 1229 (2003)

    Article  ADS  Google Scholar 

  3. H Mori, M Ishii, Y Murayama, M Kubota, K Sakanoi, M Y Yamamoto, Y Monzen, D Lummerzheim and B J Watkins Ann. Geophys. 22 1613 (2004)

    Article  Google Scholar 

  4. J T Gosling, J R Asbridge, S J Bame, W C Feldman, R D Zwickl and G Paschman, N Sckopke et al. J. Geophys. Res. 86 547 (1981)

    Article  ADS  Google Scholar 

  5. R A Cairns, A A Mamun, R Bingham, R Boström, R O Dandy, C M C Nairn and P K Shukla Geophys. Res. Lett. 22 2709 (1995)

    Article  ADS  Google Scholar 

  6. I D Dubinova and A E Dubinov Tech. Phys. Lett. 32 575 (2006)

    Article  ADS  Google Scholar 

  7. M N Kadijani, H Abbasi and H H Pajouh Plasma Phys. Control. Fusion 53 025004 (2010)

    Article  Google Scholar 

  8. N S Saini, I Kourakis and M A Hellberg Phys. Plasmas 16 062903 (2009)

    Article  ADS  Google Scholar 

  9. N S Saini and I Kourakis Plasma Phys. Control. Fusion 52 075009 (2010)

    Article  ADS  Google Scholar 

  10. N Shahmohammadi, D Dorranian and H Hakimipagouh Can. J. Phys 93 344 (2015)

    ADS  Google Scholar 

  11. V M Vasyliunas J. Geophys. Res. 73 2839 (1968)

    Article  ADS  Google Scholar 

  12. V Pierrard and M Lazar Solar Physics 267 153 (2010)

    Article  ADS  Google Scholar 

  13. W Masood, A Mushtaq and R Khan Phys. Plasmas 14 123702 (2007)

    Article  ADS  Google Scholar 

  14. J Vranjes, H Saleem and S Poedts Phys. Rev. E 69 056404 (2004)

    Google Scholar 

  15. S Ghosh, S Sarkar, M Khan and M R Gupta Phys. Plasmas 7 3594 (2006)

    Article  ADS  Google Scholar 

  16. N N Rao, P K Shukla and M Y Yu Planet. Space Sci. 38 543 (1990)

    Article  ADS  Google Scholar 

  17. P K Shukla and V P Silin Phys. Scr. 45 508 (1992)

    Article  ADS  Google Scholar 

  18. I Kourakis and P K Shukla Eur. Phys. J. D. 30 97 (2004)

    Article  ADS  Google Scholar 

  19. P K Shukla Phys. Plasmas 10 1619 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. A Barkan, N D’ Angelo and R L Merlino Phys. Plasmas 2 231 (1995)

    ADS  Google Scholar 

  21. J B Pieper and J Goree Phys. Rev. Lett. 77 3137 (1996)

    Article  ADS  Google Scholar 

  22. P Eslami, M Mottaghizadeh and H R Pakzad Can. J. Phys 90 525 (2012)

    ADS  Google Scholar 

  23. F Verheest, M A Hellberg and I Kourakis Phys. Rev. E. 87 043107 (2013)

    Google Scholar 

  24. A S Bains, N S Saini and T S Gill Can. J. Phys 91 582 (2013)

    ADS  Google Scholar 

  25. Y Nakamura, H Bailung and P K Shukla Phys. Rev. Lett. 83 1602 (1999)

    Article  ADS  Google Scholar 

  26. M S Alam, M M Masud and A A Mamun Chin. Phys. B 22 115202 (2013)

    Google Scholar 

  27. M Ferdousi, S Sultana, M M Hossein, M R Miah and A A Mamun Eur. Phys. J. D. 71 102 (2017)

    ADS  Google Scholar 

  28. S G Tagare Phys. Plasmas 4 3167 (1997)

    Article  ADS  Google Scholar 

  29. P Schippers, M Blanc, N Andre, I Dandouras, G R Lewis, L K Gilbert et al. J. Geophys. Res. 113 A07208 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharitree Dutta.

Appendix

Appendix

In this appendix, the constants associated with the modified KdV equation (Eq. 27) are expressed.

$$ a = \left[ {\frac{{\mu_{\text{c}} \sigma_{\text{c}}^{3} \left( {\kappa_{\text{c}} - \frac{1}{2}} \right)\left( {\kappa_{\text{c}} + \frac{1}{2}} \right)\left( {\kappa_{\text{c}} + \frac{3}{2}} \right)}}{{2\left( {\kappa_{\text{c}} - \frac{3}{2}} \right)^{3} }} + \frac{{\mu_{\text{h}} \sigma_{\text{h}}^{3} \left( {\kappa_{\text{h}} - \frac{1}{2}} \right)\left( {\kappa_{\text{h}} + \frac{1}{2}} \right)\left( {\kappa_{\text{h}} + \frac{3}{2}} \right)}}{{2\left( {\kappa_{\text{h}} - \frac{3}{2}} \right)^{3} }} - \frac{15}{{2M^{6} }} - \frac{15}{{2\delta^{3} M^{6} }} + \frac{{19\gamma_{1} }}{{M^{4} }}} \right. $$
$$ {{\left. { - \frac{{3\gamma_{1}^{2} }}{{M^{2} }} - \frac{{4\gamma_{2} }}{{M^{2} }} + 3\gamma_{3} } \right]} \mathord{\left/ {\vphantom {{\left. { - \frac{{3\gamma_{1}^{2} }}{{M^{2} }} - \frac{{4\gamma_{2} }}{{M^{2} }} + 3\gamma_{3} } \right]} {\left[ { - \frac{2}{{\delta M^{3} }} - \frac{2}{{M^{3} }}} \right]}}} \right. \kern-0pt} {\left[ { - \frac{2}{{\delta M^{3} }} - \frac{2}{{M^{3} }}} \right]}} $$
$$ b = {{\left[ {\frac{{4\mu_{\text{c}} \sigma_{\text{c}}^{2} \left( {\kappa_{\text{c}} - \frac{1}{2}} \right)\left( {\kappa_{\text{c}} + \frac{1}{2}} \right)}}{{2\left( {\kappa_{\text{c}} - \frac{3}{2}} \right)^{2} }} + \frac{{\mu_{\text{h}} \sigma_{\text{h}}^{2} \left( {\kappa_{\text{h}} - \frac{1}{2}} \right)\left( {\kappa_{\text{h}} + \frac{1}{2}} \right)}}{{2\left( {\kappa_{\text{h}} - \frac{3}{2}} \right)^{2} }} + \frac{6}{{M^{4} }} - \frac{6}{{\delta^{2} M^{4} }} - \frac{{6\gamma_{1} }}{{M^{2} }} + 4\gamma_{2} } \right]} \mathord{\left/ {\vphantom {{\left[ {\frac{{4\mu_{\text{c}} \sigma_{\text{c}}^{2} \left( {\kappa_{\text{c}} - \frac{1}{2}} \right)\left( {\kappa_{\text{c}} + \frac{1}{2}} \right)}}{{2\left( {\kappa_{\text{c}} - \frac{3}{2}} \right)^{2} }} + \frac{{\mu_{\text{h}} \sigma_{\text{h}}^{2} \left( {\kappa_{\text{h}} - \frac{1}{2}} \right)\left( {\kappa_{\text{h}} + \frac{1}{2}} \right)}}{{2\left( {\kappa_{\text{h}} - \frac{3}{2}} \right)^{2} }} + \frac{6}{{M^{4} }} - \frac{6}{{\delta^{2} M^{4} }} - \frac{{6\gamma_{1} }}{{M^{2} }} + 4\gamma_{2} } \right]} {\left[ { - \frac{2}{{\delta M^{3} }} - \frac{2}{{M^{3} }}} \right]}}} \right. \kern-0pt} {\left[ { - \frac{2}{{\delta M^{3} }} - \frac{2}{{M^{3} }}} \right]}} $$
$$ c = {1 \mathord{\left/ {\vphantom {1 {\left[ {\frac{2}{{\delta M^{3} }} + \frac{2}{{M^{3} }}} \right]}}} \right. \kern-0pt} {\left[ {\frac{2}{{\delta M^{3} }} + \frac{2}{{M^{3} }}} \right]}} $$

where \( \gamma_{1} \), \( \gamma_{2} \), and \( \gamma_{3} \) are constants associated with dust charge derived from current balance equation,

$$ I_{\text{ec}} + I_{\text{eh}} + I_{\text{i}} = 0,\;{\text{with}} $$
$$ I_{\text{ec}} = - e\pi r^{2} \left( {8T_{\text{ec}} /\pi m_{\text{e}} } \right)^{1/2} n_{\text{ec}} \exp \left( {\frac{e\varPhi }{{T_{\text{ec}} }}} \right) $$
$$ I_{\text{eh}} = - e\pi r^{2} \left( {8T_{\text{eh}} /\pi m_{\text{e}} } \right)^{1/2} n_{\text{eh}} \exp \left( {\frac{e\varPhi }{{T_{\text{eh}} }}} \right) $$
$$ I_{\text{i}} = - e\pi r^{2} \left( {8T_{\text{i}} /\pi m_{\text{i}} } \right)^{1/2} n_{\text{i}} \left( {1 - \frac{e\varPhi }{{T_{\text{i}} }}} \right), $$

where \( \varPhi \) is the dust grain surface potential relative to the plasma potential.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D., Goswami, K.S. Dust ion acoustic double layer in the presence of superthermal electrons. Indian J Phys 93, 257–265 (2019). https://doi.org/10.1007/s12648-018-1279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1279-0

Keywords

PACS No.

Navigation