Skip to main content
Log in

On the new wave behavior to the Klein–Gordon–Zakharov equations in plasma physics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this study, the extended sinh-Gordon equation expansion method is used in constructing various exact solitary wave solutions to the Klein–Gordon–Zakharov equations. The Klein–Gordon–Zakharov equations is a nonlinear model describing the interaction between the Langmuir wave and the ion acoustic wave in a high-frequency plasma. We successfully construct some topological, non-topological, compound topological and non-topological, singular, compound singular solitons and singular periodic wave solutions. Under the choice of suitable values of the parameters, the 2D, 3D and contour graphs to some of the reported solutions are also plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M Saravanan and S Dhamayanthi Chin. J. Phys. 55 79 (2017)

    Article  Google Scholar 

  2. S S Ray Chin. J. Phys. 55 2039 (2017)

    Article  Google Scholar 

  3. X Y Xie, B Tian, X Y Wu, H P Chai and Y Jiang Chin. J. Phys. 55 1369 (2017)

    Article  Google Scholar 

  4. K U Tariq and M Younis Optik 142 446 (2017)

    Article  ADS  Google Scholar 

  5. E M E Zayed, A G Al-Nowehy and M E M Elshater Eur. Phys. J. Plus 132 259 (2017)

    Article  Google Scholar 

  6. A Mao, L Yang, A Qian and S Luan Appl. Math. Lett. 68 8 (2017)

    Article  MathSciNet  Google Scholar 

  7. Z Kalogiratou, T Monovasilis J. Math. Chem. 37 271 (2005)

    Article  MathSciNet  Google Scholar 

  8. H M Baskonus, T A Sulaiman, and H Bulut Optik 131 1036 (2017)

    Article  ADS  Google Scholar 

  9. J H B Nijhoft and G H M Roelofs J. Phys. A: Math. Gen. 25 2403 (1992)

    Article  ADS  Google Scholar 

  10. A R Seadawy and Results Phys Results Phys. 7 43 (2017)

    Article  ADS  Google Scholar 

  11. , Baleanu and F Gao Proc. Romanian Acad. Ser. A 18 231 (2017)

    Google Scholar 

  12. X J Yang, F Gao and H M Srivastava J. Comput. Appl. Math. https://doi.org/10.1016/j.cam.2017.10.007. (2017)

    Google Scholar 

  13. X J Yang, J A T Machado and D Baleanu Fractals 25 1740006 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. X J Yang, F Gao and H M Srivastava Comput. Math. Appl. 73 203 (2017)

    Article  MathSciNet  Google Scholar 

  15. X J Yang, J A T Machado, D Baleanu and C Cattani Chaos 26 4960543 (2016)

    Google Scholar 

  16. F Gao, X J Yang and Y F Zhang Thermal Sci. 21 1833 (2017)

    Article  Google Scholar 

  17. F Gao, X J Yang and H M Srivastava Thermal Sci. 21 2307 (2017)

    Article  Google Scholar 

  18. X J Yang and F Gao Thermal Sci. 21 133 (2017)

    Article  Google Scholar 

  19. X J Yang, Y S Gasimov and F Gao Proc. Inst. Math. Mech. 43 123 (2017)

    Google Scholar 

  20. Y Guo Dyn. Syst. 32 490 (2017)

    Article  MathSciNet  Google Scholar 

  21. Y Guo Electron. J. Qual. Theory Differ. Equ. 3 1 (2009)

    ADS  Google Scholar 

  22. X J Yang Appl. Math. Lett. 64 193 (2017)

    Article  MathSciNet  Google Scholar 

  23. C Cattani, T A Sulaiman, H M Baskonus and H Bulut Opt. Quant. Electron. 50 138 (2018)

    Article  Google Scholar 

  24. H Bulut, T A Sulaiman, H M Baskonus and T Akturk Opt. Quant. Electron. 50 134 (2018)

    Article  Google Scholar 

  25. M A Helal and A R Seadawy Math. Phys. 62 839 (2011)

    Google Scholar 

  26. X LüNonlinear Dyn. 81 239 (2015)

    Article  Google Scholar 

  27. T A Sulaiman, T Akturk, H Bulut and H M Baskonus J. Electromagn. Waves Appl. https://doi.org/10.1080/09205071.2017.1417919 (2017)

    Google Scholar 

  28. S S Ray Commun. Nonlinear Sci. Numer. Simul. 13 1311 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. H M Baskonus, H Bulut and T A Sulaiman Indian J. Phys. 135 327 (2017)

    Google Scholar 

  30. D E Pelinovsky Chaos 15 037115 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. H Bulut, T A Sulaiman and B Demirdag, Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3997-9 (2017)

    Google Scholar 

  32. S T R Rizvi, I Ali, K Ali and M Younis Opt. Int. J. Light Electron. Opt. 127 5328 (2016)

    Article  Google Scholar 

  33. H Bulut, T A Sulaiman, H M Baskonus and T Akturk Opt. Quant. Electron. 50 19 (2018)

    Article  Google Scholar 

  34. K Ali, S R R Rizvi, S Ahmad, S Bashir and M Younis, Optik 142 327 (2017)

    Article  ADS  Google Scholar 

  35. M Eslami Nonlinear Dyn. 85 813–816 (2016)

    Article  Google Scholar 

  36. S T R Rizvi and K Ali Nonlinear Dyn. 87 1967 (2017)

    Article  Google Scholar 

  37. M Eslami and H Rezazadeh Calcolo 53 475 (2016)

    Article  MathSciNet  Google Scholar 

  38. O A Ilhan, H Bulut, T A Sulaiman and H M Baskonus Indian J. Phys. https://doi.org/10.1007/s12648-018-1187-3 (2018)

    Google Scholar 

  39. C Cattani Int. J. Fluid Mech. Res. 30 23 (2003)

    MathSciNet  Google Scholar 

  40. H Bulut, T A Sulaiman and H M Baskonus Optik 163 1 (2018)

    Article  ADS  Google Scholar 

  41. H Bulut, T A Sulaiman and H M Baskonus Optik 163 49 (2018)

    Article  ADS  Google Scholar 

  42. H M Baskonus, T A Sulaiman Opt. Quant. Electron. 50 165 (2018)

    Article  Google Scholar 

  43. A Sardar, K Ali, S T R Rizvi, M Younis, Q Zhou, E Zerrad, A Biswas and A Bhrawy J. Nanoelectron. Optoelectron. 11 382 (2016)

    Article  Google Scholar 

  44. J I Segata Commu. Partial Differ. Equ. 40 309 (2015)

    Article  MathSciNet  Google Scholar 

  45. F S Khodadad, F Nazari, M Eslami and H Rezazadeh Opt. Quantum Electron. 49 384 (2017)

    Article  Google Scholar 

  46. M Eslami, F S Khodadad, F Nazari and H Rezazadeh Opt. Quantum Electron. 49 391 (2017)

    Article  Google Scholar 

  47. M Eslami, H Rezazadeh, M Rezazadeh and S S Mosavi Opt. Quantum Electron. 49 279 (2017)

    Article  Google Scholar 

  48. M Eslami Appl. Math. Comput. 285 141 (2016)

    MathSciNet  Google Scholar 

  49. M Eslami and M Rezazadeh Nonlinear Dyn. 83 731 (2016)

    Article  Google Scholar 

  50. M Ekici, M Rezazadeh and M Eslami Nonlinear Dyn. 84 669 (2016)

    Article  Google Scholar 

  51. M Rezazadeh, M Eslami and A Biswas Nonlinear Dyn. 80 387 (2015)

    Article  Google Scholar 

  52. A Biswas, M Mirzazadeh, M Eslami, D Milovic and M Belic Frequenz 68 387 (2014)

    Article  Google Scholar 

  53. M Mirzazadeh, M Eslami, E Zerrad, M F Mahmood, A Biswas and M Belic Nonlinear Dyn. 81 1933 (2015)

    Article  Google Scholar 

  54. M Mirzazadeh, M Ekici, M Eslami, E V Krishnan, S Kumar and A Biswas Nonlinear Anal. Model. Control 22 441 (2017)

    Article  MathSciNet  Google Scholar 

  55. M Eslami and M Mirzazadeh Ocean Eng. 83 133 (2014)

    Article  Google Scholar 

  56. A Neirameh and M Eslami Sci. Iran. 24 715 (2017)

    Google Scholar 

  57. M Eslami and A Neirameh Opt. Quantum Electron. 50 47 (2018)

    Article  Google Scholar 

  58. Z Yan and H Zhang Phys. Lett. A 252 291 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  59. H M Baskonus, T A Sulaiman and H Bulut Opt. Quant. Electron. 50 14 (2018)

    Article  Google Scholar 

  60. Z Y Zhang, J Zhong, S S Dou, J Liu, D Peng and T Gao Romanian Rep. Phys. 64 1155 (2013)

    Google Scholar 

  61. S G Thornhill and D Haar Phys. Rep. 43 43 (1978)

    Article  ADS  Google Scholar 

  62. X Xian-Lin and T Jia-Shi Commun. Theor. Phys. 50 1047 (2008)

    Article  ADS  Google Scholar 

  63. H Bulut, T A Sulaiman and H M Baskonus Superlattices Microstruct. https://doi.org/10.1016/j.spmi.2017.12.009 (2018)

    Google Scholar 

  64. H Triki and N Boucerredj Appl. Math. Comput. 227 341 (2014)

    MathSciNet  Google Scholar 

  65. Y Shang, Y Huang and W Yuan Comput. Math. Appl. 56 1441 (2008)

    Article  MathSciNet  Google Scholar 

  66. Z Zhang, F L Xia and X P Li Pramana 80 41 (2013)

    Article  ADS  Google Scholar 

  67. M Ekici, D Duran and A Sonmezoglu Comput. Math. 2013 716279 (2013)

    Google Scholar 

  68. M Akbari and N Taghizadeh Ain Shams Eng. J. 5 979 (2014)

    Article  Google Scholar 

  69. N A Kudryashov Chaos Soliton Fract 24 1217 (2005)

    Article  ADS  Google Scholar 

  70. Q Shi, Q Xiao and X Liu Appl. Math. Comput. 218 9922 (2012)

    MathSciNet  Google Scholar 

  71. T Wang, J Chen and L Zhang J. Comput. Appl. Math. 205 430 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  72. H Fan, Y Cheng, Y Zhu, C Tian and D Dai Sch. J. Eng. Technol. 3 240 (2015)

    Google Scholar 

  73. E W Weisstein (New York: CRC Press) (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Bulut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskonus, H.M., Sulaiman, T.A. & Bulut, H. On the new wave behavior to the Klein–Gordon–Zakharov equations in plasma physics. Indian J Phys 93, 393–399 (2019). https://doi.org/10.1007/s12648-018-1262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1262-9

Keywords

PACS Nos.

Navigation