Skip to main content
Log in

Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for regulating flows. The electrohydrodynamics problem is modified by means of Debye–Hückel linearization. Firstly, the governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in Cartesian coordinates, then long wavelength and low/zero Reynolds (“neglecting the inertial forces”) approximations are applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics. The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz–Smoluchowski velocity is examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with peristalsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T W Latham Fluid Motions in a Peristaltic Pump (USA: Massachusetts Institute of Technology) (1966)

  2. M H Haroun Comput. Mater. Sci. 39(2) 324 (2007)

    Article  Google Scholar 

  3. M Kothandapani and S Srinivas Int. J. Non Linear Mech. 43(9) 915 (2008)

    Article  ADS  Google Scholar 

  4. S Nadeem and S Akram Commun. Nonlinear Sci. Numer. Simul. 15(7) 1705 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. A F Munir, H Tasawar and A Bashir J. Cent. South Univ. 21(4) 1411 (2014)

    Article  Google Scholar 

  6. D Tripathi and O A Bég Int. J. Heat Mass Transf. 70 61 (2014)

    Article  Google Scholar 

  7. D Tripathi, O A Bég, P K Gupta, G Radhakrishnamacharya and J Mazumdar J. Bionic Eng. 12(4) 643 (2015)

    Article  Google Scholar 

  8. A Sinha, G C Shit and N K Ranjit Alex. Eng. J. 54(3) 691 (2015)

    Article  Google Scholar 

  9. R Ellahi and F Hussain J. Magn. Magn. Mat. 393 284 (2015)

    Article  ADS  Google Scholar 

  10. M A Abbas, Y Q Bai, M M Bhatti and M M Rashidi Alex. Eng. J. 55(1) 653662 (2016)

    Google Scholar 

  11. D Tripathi, N S Akbar, Z H Khan and O A Bég J. Eng. Med. 230(9) 817 (2016)

    Article  Google Scholar 

  12. R Ellahi, M M Bhatti, C Fetecau and K Vafai Commun. Theor. Phys. 65(1) 66 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. D Tripathi J. Int. Acad. Phys. Sci. 19(3) (2016)

  14. P H Paul, D W Arnold, D W Neyer and K B Smith Micro Total Analysis Systems pp 583–590 (2000)

  15. Y Kang, S C Tan, C Yang and X Huang Sens. Actuators A Phys. 133 375 (2007)

    Article  Google Scholar 

  16. M F El-Sayed, M H Haroun and D R Mostapha J. Appl. Mech. Tech. Phys. 55(4) 565 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. A Sinha and G C Shit J. Magn. Magn. Mater. 378 143 (2015)

    Article  ADS  Google Scholar 

  18. L Wang, Y Jian, Q Liu, F Li and L Chang Colloids Surf. A Physicochem. Eng. Asp. 494 87 (2016).

    Article  Google Scholar 

  19. D Tripathi, S Bhushan and O A Bég Colloids Surf. A Physicochem. Eng. Asp. 506 32 (2016)

    Article  Google Scholar 

  20. D Tripathi, S Bhushan and O A Bég J. Mech. Med. Biol. 17 5 (2017)

    Article  Google Scholar 

  21. M M Bhatti, A Zeeshan, R Ellahi and N Ijaz J. Mol. Liq. 230 237 (2017)

    Article  Google Scholar 

  22. H Yang et al Microfluid. Nanofluidics 7 767 (2009)

    Article  Google Scholar 

  23. S Abdalla, S S Al-Ameer and S H Al-Magaishi Biomicrofluidics 4(3) 034101 (2010)

    Article  Google Scholar 

  24. E Sayar and B Farouk Smart Mater. Struct. 21 075002 (2012)

    Article  ADS  Google Scholar 

  25. Y Sato, M Hashimoto, S Cai and N Hashimoto 6th JFPS Int Symp Fluid Power (Japan) Nov 7–10 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhorar, R., Tripathi, D., Bhatti, M.M. et al. Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel. Indian J Phys 92, 1229–1238 (2018). https://doi.org/10.1007/s12648-018-1215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1215-3

Keywords

PACS Nos.

Navigation