Skip to main content
Log in

Stability and soliton solutions for a parity-time-symmetric vector nonlinear Schrödinger system

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the two-coupled nonlinear Schrödinger equations with parity-time-symmetric potential in the presence of four-wave mixing. We construct the soliton solutions for the vector nonlinear Schrödinger equations with some PT-symmetric potentials. Then the linear-stability spectrum for solitary waves is studied. Moreover, soliton solutions in high dimensional case are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R K Dodd, J C Eilbeck, J D Gibbon and H C Morris Solitons and Nonlinear Wave Equations (New York : Academic Press (1982)

    MATH  Google Scholar 

  2. V E Zakharov and A B Shabat Zh. Eksp. Teor. Fiz. 61 118 (1971)

    Google Scholar 

  3. B Kibler, J Fatome, C Finot, G Millot, G Genty, B Wetzel, N Akhmediev, F Dias and J M Dudley Sci. Rep. 2 463 (2012)

    Article  ADS  Google Scholar 

  4. G P Agrawal Nonlinear Fiber Optics (Boston : Academic Press) (2007)

    MATH  Google Scholar 

  5. V N Serkin, H Akira and T L Belyaeva Phys. Rev. Lett. 98 074102 (2007)

    Article  ADS  Google Scholar 

  6. S A Ponomarenko and G P Agrawal Phys. Rev. Lett. 97 013901 (2006)

    Article  ADS  Google Scholar 

  7. Q Zhou, Q P Zhu, Y X Liu, H Yu, W Cui, P Yao, A H Bhrawy and A Biswas Laser Phys. 25 025402 (2015)

    Article  ADS  Google Scholar 

  8. L M Ling and L C Zhao Phys. Rev. E 92 022924 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. C J Pethick and H Smith Bose–Einstein Condensation in Dilute Gases (Cambridge : Cambridge University Press) (2002)

    Google Scholar 

  10. X Lü and B Tian Phys. Rev. E 85 026117 (2012)

    Article  ADS  Google Scholar 

  11. B L Guo and L M Ling Chin. Phys. Lett. 28 110202 (2011)

    Article  ADS  Google Scholar 

  12. R Xiang, L M Ling and X Lü Appl. Math. Lett. 68 163 (2017)

    Article  MathSciNet  Google Scholar 

  13. L C Zhao, L M Ling, Z Y Yang and J Liu Commun. Nonlinear Sci. Numer. Simul. 23 21 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. L C Zhao, G G Xin and Z Y Yang Phys. Rev. E 90 022918 (2014)

    Article  ADS  Google Scholar 

  15. X Lü, S T Chen and W X Ma Nonlinear Dyn. 86 523 (2016)

    Article  Google Scholar 

  16. X Lü and W X Ma Nonlinear Dyn. 85 1217 (2016)

    Article  Google Scholar 

  17. Z H Musslimani, K G Makris, R El-Ganainy and D N Christodoulides Phys. Rev. Lett. 100 030402 (2008)

    Article  ADS  Google Scholar 

  18. Z H Musslimani, K G Makris, R El-Ganainy and D N Christodoulides J. Phys. A 41 244019 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y V Kartashov, V V Konotop, V A Vysloukh and L Torner Opt. Lett. 35 003177 (2010)

    Article  ADS  Google Scholar 

  20. F H Lin, S T Chen, Q X Qu, J P Wang, X W Zhou and X Lü Appl. Math. Lett. (2017) https://doi.org/10.1016/j.aml.2017.10.013

    Article  MathSciNet  Google Scholar 

  21. W X Ma and M Chen Appl. Math. Comput. 215 2835 (2009)

    MathSciNet  Google Scholar 

  22. Y J Zhang, D Zhao and W X Ma J. Math. Phys. 58 013505 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Z Y Yan, Z C Wen and C Hang Phys. Rev. E 92 022913 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. C Q Dai and Y Y Wang Opt. Commun. 315 303 (2014)

    Article  ADS  Google Scholar 

  25. B Midya and R Roychoudhury Phys. Rev. A 87 045803 (2013)

    Article  ADS  Google Scholar 

  26. X Lü, J P Wang, F H Lin and X W Zhou Nonlinear Dyn. (2017) https://doi.org/10.1007/s11071-017-3942-y

    Article  Google Scholar 

  27. L N Gao, X Y Zhao, Y Y Zi, J Yu and X Lü Comput. Math. Appl. 72 1225 (2016)

    Article  MathSciNet  Google Scholar 

  28. X Lü, W X Ma, Y Zhou and C M Khalique Comput. Math. Appl. 71 1560 (2016)

    Article  MathSciNet  Google Scholar 

  29. H L Han and J Gao Commun. Nonlinear Sci. Numer. Simul. 42 520 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Z Shi, X Jiang, X Zhu and H Li Phys. Rev. A 84 053855 (2011)

    Article  ADS  Google Scholar 

  31. F K Abdullaev, Y V Kartashov, V V Konotop and D A Zezyulin Phys. Rev. A 83 041805 (2011)

    Article  ADS  Google Scholar 

  32. Z Ahmed Phys. Lett. A 287 295 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  33. C E Ruter, K G Makris, R El-Ganainy, D N Christodoulides, M Segev and D Kip Nat. Phys. 6 192 (2010).

    Article  Google Scholar 

  34. X Lü, W X Ma, J Yu and C M Khalique Commun. Nonlinear Sci. Numer. Simul. 31 40 (2016)

    Article  MathSciNet  Google Scholar 

  35. X Lü and F H Lin Commun. Nonlinear Sci. Numer. Simul. 32 241 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. G Lévai and M Znojil J. Phys. A 33 7165 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. X P Cheng, J Y Wang and J Y Li Nonlinear Dyn. 77 545 (2014)

    Article  Google Scholar 

  38. J Yang Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia : SIAM) (2010)

    Book  Google Scholar 

  39. X Lü, W X Ma, S T Chen and C M Khalique Appl. Math. Lett. 58 13 (2016)

    Article  MathSciNet  Google Scholar 

  40. G Vahala, L Vahala and J Yepez Phys. Lett. A 362 215 (2006)

    Google Scholar 

  41. X Y Tang, Y Gao and P K Shukla Eur. Phys. J. D 61 677 (2011)

    Article  ADS  Google Scholar 

  42. X G He, D Zhao, L Li and H G Luo Phys. Rev. E 79 056610 (2009)

    Article  ADS  Google Scholar 

  43. C M Bender Rep. Progr. Phys. 70 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. J T Cole, K G Makris, Z H Musslimani, D N Christodoulides and S Rotter Physica D 336 53–61 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. E A Ostrovskaya, N N Akhmediev, G I Stegeman, J U Kang and J S Aitchison J. Opt. Soc. Am. B 14 800(1997)

    Article  ADS  Google Scholar 

  46. L J Han, Y H Huang and H Liu Commun. Nonlinear Sci. Numer. Simul. 19 3063 (2014)

  47. L C Zhao and S L He Phys. Lett. A 375 3017 (2011)

    Article  ADS  Google Scholar 

  48. L N Gao, Y Y Zi, Y H Yin, W X Ma and X Lü Nonlinear Dyn. 89 2233 (2017)

    Article  Google Scholar 

  49. L C Zhao, B L Guo and L M Ling J. Math. Phys. 57 5 (2016)

    Google Scholar 

  50. P S Vinayagam, R Radha, U A Khawaja and L M Ling Commun. Nonlinear Sci. Numer. Simul. 52 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

L. Han was supported by the Fundamental Research Funds for the Central Universities (Grant 2018MS054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijia Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Xin, L. Stability and soliton solutions for a parity-time-symmetric vector nonlinear Schrödinger system. Indian J Phys 92, 1291–1298 (2018). https://doi.org/10.1007/s12648-018-1205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1205-5

Keywords

PACS Nos.

Navigation