Skip to main content
Log in

Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby–Mori–Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler–Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E Winkler H. Dominicus Prague Czechoslov. 34 182 (1867)

  2. M Hetenyi Beams on Elastic Foundations; Theory with Applications in the Fields of Civil and Mechanical Engineering (United States: Ann Arbor, University of Michigan Press) (1946)

  3. I B Teodoru Intersect. J. 6 28 (2009)

  4. M M Filonenko-Borodich Uch. Zap. Mosk. Gos. Univ. Mekh. 46 3 (1940)

  5. P L Pasternak On a New Method of Analysis of An Elastic Foundation by Means of Two Foundation Constants (Russian: Gosudarstrennoe Izdatelstvo Literaturi Po Stroitelstvu I Arkhitekture) (1954)

  6. V Z Vlasov and N N Leontev Beams, Plates and Shells on Elastic Foundations (translated from Russian: Scientific Translations Ltd.) (1966)

  7. R Jones and J Xenophontos Int. J. Mech. Sci. 19(06) 317 (1977)

    Article  Google Scholar 

  8. Z Feng and R D Cook J. Eng. Mech. 109(6) 1390 (1983)

    Article  Google Scholar 

  9. T Nogami and Y C Lam J. Eng. Mech. 113(9) 1279 (1987)

    Article  Google Scholar 

  10. C V G Vallabhan and Y C Das J. Eng. Mech. 114(12) 2072 (1988)

    Article  Google Scholar 

  11. K Morfidis and I E Avramidis Comput. Struct. 80(25) 1919 (2002)

    Article  Google Scholar 

  12. Q Liu and J Ma J. Eng. Mech. 139(12) 1757 (2013)

    Article  Google Scholar 

  13. S Iijima Nature 354 56 (1991)

    Article  ADS  Google Scholar 

  14. D Salvetat and A Rubio Carbon 40(10) 1729 (2002)

    Article  Google Scholar 

  15. J Wuite and S Adali Compos. Struct. 71(3–4) 388 (2005)

    Article  Google Scholar 

  16. A Ghorbanpour Arani, S H Maghamikia, M Mohammadimehr and S Arefmanesh JMST 25(3) 809 (2011)

    Google Scholar 

  17. L L Ke, J Yang and S Kitipornchai Compos. Struct. 92(3) 676 (2010)

    Google Scholar 

  18. M H Yas and M Heshmati Appl. Math. Model. 36(4) 1371 (2012)

    Article  MathSciNet  Google Scholar 

  19. H Hedayati and B Sobhani Aragh Appl. Math. Comput. 218(17) 8715 (2012)

    MathSciNet  Google Scholar 

  20. M Heshmati and M H Yas J. Mech. Sci. Technol. 27(11) 3403 (2013)

    Article  Google Scholar 

  21. M Nejati, A Eslampanah and M M Najafizadeh Int. J. Appl. Mech. 8(01) 1650008 (2016)

    Article  Google Scholar 

  22. K Dong and X Wang Arch. Appl. Mech. 77(8) 575–586 (2007)

    Article  ADS  Google Scholar 

  23. Q S Yang, X Tao and H Yang Int. J. Eng. Sci. 45(12) 997 (2007)

    Article  Google Scholar 

  24. D L Shi, X Q Feng, Y Y Huang, K C Hwang and H J Gao J. Eng. Mater. Technol. 126(03) 250 (2004)

    Article  Google Scholar 

  25. S Jafari Mehrabadi and B Sobhani Aragh Thin Walled Struct. 80 130 (2014)

    Article  Google Scholar 

  26. V N Popov, V E Doren, and M Balkanski Solid State Commun. 114(07) 395 (2000)

    Article  ADS  Google Scholar 

  27. K Mercan and Ö Civalek Compos. Struct. 143 300–309 (2016)

    Article  Google Scholar 

  28. B Akgöz and Ö Civalek Acta Astronaut. 119 1–12 (2016)

    Article  ADS  Google Scholar 

  29. A Ghorbanpour Arani and M H Zamani J. Sandw. Struct. Mater. 1099636217721405 (2017)

  30. N Wattanasakulpong and V Ungbhakorn Int. J. Comput. Mater. Sci. Surf. Eng. 71 201–208 (2013)

    Article  Google Scholar 

  31. C V G Vallabhan, Y C Das J. Geotech. Eng. 117(6) 956 (1991)

    Article  Google Scholar 

  32. P Navarro, S Abrate, J Aubry, S Marguet and J F Ferrero Compos. Struct. 100 79 (2013)

    Google Scholar 

  33. H Qhinhon D M.S Thesis (University of New Orleans, United States) (2015)

Download references

Acknowledgements

This work was supported by University of Kashan (Grant Number 574600/36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ghorbanpour Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanpour Arani, A., Zamani, M.H. Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation. Indian J Phys 92, 767–777 (2018). https://doi.org/10.1007/s12648-018-1162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1162-z

Keywords

PACS Nos.

Navigation