Skip to main content
Log in

Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs) are investigated. Various types of beam theories namely as Euler–Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory are used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams are obtained using molecular dynamic (MD) simulation corresponding to both of short-(10,10) SWCNT and long-(10,10) SWCNT composites which are embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations are matched with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. Selected numerical results are presented to indicate the influences of nanotube volume fraction and end supports on the critical axial buckling loads of nanoconposite beams relevant to long- and short-nanotube composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Des 31:2406–2413

    Article  Google Scholar 

  • Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Kaak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  Google Scholar 

  • Bi K, Chen Y, Yang J, Wang Y, Chen M (2006) Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes. Phys Lett A 350:150–153

    Article  Google Scholar 

  • Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123–5125

    Article  Google Scholar 

  • Cao G, Chen X, Xu ZH, Li X (2010) Measuring mechanical properties of micro- and nano-fibers embedded in an elastic substrate: theoretical framework and experiment. Compos B 41(1):33–41

    Article  Google Scholar 

  • Cornwell CF, Wille LT (1997) Elastic properties of single-walled carbon nanotubes in comparison. Solid State Commun 101:555–558

    Article  Google Scholar 

  • De Rosa MA, Auciello NM, Lippiello M (2008) Dynamic stability analysis and DQM for beams with variable cross-section. Mech Res Commun 35(3):187–192

    Article  MathSciNet  MATH  Google Scholar 

  • Esawi AMK, Farag MM (2007) Carbon Nanotube reinforced composites: potential and current challenges. Mater Des 28:2394–2401

    Article  Google Scholar 

  • Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) Stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos Sci Technol 63:1655–1661

    Article  Google Scholar 

  • Geng H, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J et al (2002) Fabrication and properties of composites of poly (ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14:1387–1390

    Article  Google Scholar 

  • Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–4052

    Article  Google Scholar 

  • Haftchenari H, Darvizeh M, Darvizeh A, Ansari R, Sharma CB (2007) Dynamic analysis of composite cylindrical shells using differential quadrature method (DQM). Compos Struct 78(2):292–298

    Article  Google Scholar 

  • Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A (2004) Carbon nanofibers for composite applications. Carbon 42:1153–1158

    Article  Google Scholar 

  • Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  Google Scholar 

  • Hanasaki I, Nakatani A, Kitagawa H (2004) Molecular dynamics study of Ar flow and He flow inside carbon nanotube junction as a molecular nozzle and diffuser. Sci Technol Adv Mater 5:107–113

    Article  Google Scholar 

  • Haque A, Ramasetty A (2005) Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos Struct 71:68–77

    Article  Google Scholar 

  • Hu YJ, Zhu YY, Cheng CJ (2009) DQM for dynamic response of fluid-saturated visco-elastic porous media. Int J Solids Struct 46(7–8):1667–1675

    Article  MATH  Google Scholar 

  • Iijima S (1991) Helical microtubes of graphite carbon. Nature 354:56–58

    Article  Google Scholar 

  • Labuschange A, Van Rensburg NFJ, Van der Merwe AJ (2009) Comparison of linear beam theories. Math Comput Model 49:20–30

    Article  MathSciNet  MATH  Google Scholar 

  • Lau K (2003) Interfacial bonding characteristics of nanotube/polymer composites. Chem Phys Lett 370:399–405

    Article  Google Scholar 

  • Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos B 37:425–436

    Article  Google Scholar 

  • Li X, Gao H, Scrivens WA, Fei D, Thakur V, Sutton MA, Myrick ML (2005) Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology 16(10):2020

    Article  Google Scholar 

  • Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl Phys Lett 79:4225–4227

    Article  Google Scholar 

  • Lin CH, Ni H, Wang X, Chang M, Chao YJ, Deka JR, Li X (2010) In situ nanomechanical characterization of single-crystalline boron nanowires by buckling. Small 6(8):927–931

    Article  Google Scholar 

  • Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79:125–133

    Article  Google Scholar 

  • Malekzadeh P, Fiouz AR (2007) Large deformation analysis of orthotropic skew plates with nonlinear rotationally restrained edges using DQM. Compos Struct 80(2):196–206

    Article  Google Scholar 

  • Nanorex Inc. (2005) NanoHive-1 v.1.2.0-b1. www.nanoengineer-1.com

  • Popov VN, Van Doren VE, Balkanski M (2000) Elastic properties of crystals of single-walled carbon nanotube. Solid State Commun 114:395–399

    Article  Google Scholar 

  • Pradhan SC, Murmu T (2010) Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys E 42(7):1944–1949

    Article  Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  Google Scholar 

  • Saffar KPA, Jamalipour N, Najafi AR, Rouhi G, Arshi AR, Fereidoon A (2008) A finite element model for estimating Young’s modulus of carbon nanotube reinforced composites incorporating elastic cross-links. Int J Mech Sci 3:172–175

    Google Scholar 

  • Schadler LS, Giannairs SC, Ajayan PM (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844

    Article  Google Scholar 

  • Sepahi O, Forouzan MR, Malekzadeh P (2010) Large deflection analysis of thermo-mechanical loaded annular FGM plates on nonlinear elastic foundation via DQM. Compos Struct 92(10):2369–2378

    Article  Google Scholar 

  • Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91:9–19

    Article  Google Scholar 

  • Shokrieh MM, Rafiee R (2010) On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos Struct 92:647–652

    Article  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  • Villoria RG, Miravete A (2007) Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater 55:3025–3031

    Article  Google Scholar 

  • Wei C, Cho K, Srivastava D (2001) Chemical bonding of polymer on carbon nanotube. In: MRS proceedings, vol 675. Cambridge University Press, pp 4–7

  • Xiao JR, Lopatnikov SL, Gama BA, Gillespie JW (2006) Nanomechanics on the deformation of single- and multi-walled carbon nanotube under radial pressure. Mater Sci Eng A 416:192–204

    Article  Google Scholar 

  • Xu X, Thwe MM, Shearwood C, Liao K (2002) Mechanical properties and interfacial characteristics of carbon nanotube-reinforced epoxy thin films. Appl Phys Lett 81:28–33

    Article  Google Scholar 

  • Yang Y, Rigdon W, Huang X, Li X (2013) Enhancing graphene reinforcing potential in composites by hydrogen passivation induced dispersion. Sci Rep 3:2086

    Article  Google Scholar 

  • Zeng QH, Yu AB, Lu GQ (2008) Multiscale modeling and simulation of polymer nanocomposites. Progress Polym Sci 33:191–269

    Article  Google Scholar 

  • Zhang CL, Shen HS (2006) Temperature-dependent elastic properties of single-walled carbon nanotubes: prediction from molecular dynamics simulation. Appl Phys Lett 89:081904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fattahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattahi, A.M., Safaei, B. Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions. Microsyst Technol 23, 5079–5091 (2017). https://doi.org/10.1007/s00542-017-3345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3345-5

Keywords

Navigation