Skip to main content
Log in

Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland’s diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. A C Eringen J. Appl. Math. Mech. 16 1 (1996)

    Google Scholar 

  2. A C Eringen J. Math. Anal. Appl. 38 480 (1972)

    Article  Google Scholar 

  3. A C Eringen Micro-continuum Field Theories II Fluent Media (New York: Springer) (2001)

    MATH  Google Scholar 

  4. G Lukaszewicz Micropolar Fluids, Modelling and Simulation (Boston: Birkhauser Boston) (1999)

    Book  MATH  Google Scholar 

  5. T Ariman, M A Turk and N D Sylvester Int. J. Eng. Sci. 11 905 (1973)

    Article  Google Scholar 

  6. T Ariman, M A Turk and N D Sylvester Int. J. Eng. Sci. 12 273 (1974)

    Article  Google Scholar 

  7. G Swapna, L Kumar, O Anwar Bég and Bani Singh Heat Transf. Asian Res. 1 (2014). doi:10.1002/htj.21134

  8. S Jangili and J.V. Murthy Front. Heat Mass Transf. 6(1) 1 (2015)

    Article  Google Scholar 

  9. S Rawat, R Bhargava, R Bhargava and O Anwar Bég Proc. IMechE Part C J. Mech. Eng. Sci. 223 2341 (2009)

    Article  Google Scholar 

  10. O Anwar Bég, J Zueco and T B Chang Chem. Eng. Commun. 198(3) 312 (2010)

    Article  Google Scholar 

  11. O Anwar Bég, J Zueco, M Norouzi, M Davoodi, A A Joneidi and A F Elsayed Comput. Biol. Med. 44 44 (2014)

    Article  Google Scholar 

  12. F M Abo-Eldahab and A F Ghonaim Appl. Math. Comput. 169(1) 500 (2005)

    MathSciNet  Google Scholar 

  13. M Ferdows, P Nag, A Postelnicu and K Vajravelu J. Appl.Fluid Mech. 6(2) 285 (2013)

    Google Scholar 

  14. B I Olajuwon and J I Oahimire Int. J. Pure Appl. Math. 84 015 (2013)

    Article  Google Scholar 

  15. P K Kundu, K Das and S Jana Bull. Malays. Math. Sci. Soc. 38 1185 (2015)

    Article  MathSciNet  Google Scholar 

  16. M M Rahman and Y Sultana Nonlinear Anal. Model. Control 13 71 (2008)

    Google Scholar 

  17. P Cheng Int. J. Heat Mass Transf. 20 807 (1977)

    Article  Google Scholar 

  18. P K Singh Int. J. Sci. Eng. Research 3 2229 (2012)

    Google Scholar 

  19. M Sudheer Babu, J Girish Kumar and T Shankar reddy Int. J. Appl. Math. Mech. 9(6) 48 (2013)

    Google Scholar 

  20. P Roja, T Shankar Reddy and N Bhaskar Reddy Int. J. Sci. Res. Publ. 3 (2013) Issue 6

  21. C H Chen Acta Mech. 172 219 (2004)

    Article  Google Scholar 

  22. Aurangzaib, A R M Kasim, N F Mohammad and S Shafie Heat Transf. Asian Res. 42(2) 89 (2013). doi:10.1002/htj.21034

    Article  Google Scholar 

  23. J Srinivas, J V Ramana Murthy and A J Chamkha Int.J. Numer. Methods Heat Fluid Flow 26(3) 1027 (2016). doi:10.1108/HFF-09-2015-0354

    Article  Google Scholar 

  24. S K Bhaumik and R Behera, ICCHMT, Procedia Eng. 127 155 (2015). doi:10.1016/j.proeng.201.11.318

  25. M K Nayak and G C Dash Model. Meas. Control B 84(2) 1 (2015)

    Google Scholar 

  26. M E M Khedr, A J Chamkha and M Bayomi Nonlinear Anal. Model. Control 14 27 (2009)

    Google Scholar 

  27. E Magyari and A J Chamkha Int. J. Therm. Sci. 49 1821 (2010)

    Article  Google Scholar 

  28. A J Chamkha and A R A Khaled Heat Mass Transf. 37 117 (2001)

    Article  ADS  Google Scholar 

  29. M M Rahman, M J Uddin and A Aziz Int. J. Therm. Sci. 48(3) 2331 (2009)

    Article  Google Scholar 

  30. D Srinivasacharya and M Upender Turk. J. Eng. Environ. Sci. 38 184 (2015)

    Google Scholar 

  31. S Siva Reddy and M D Shamshuddin, ICCHMT, Procedia Eng. 127 885 (2015)

  32. S Siva Reddy and M D Shamshuddin Theor. Appl. Mech. 43 117 (2016)

    Article  ADS  Google Scholar 

  33. S Rawat, S Kapoor, R Bhargava and O Anwar Bég Int. J. Comput. Appl. 44 40 (2012)

    Google Scholar 

  34. K Das Int. J. Numer. Methods Fluids 70(1) 96 (2012)

    Article  ADS  Google Scholar 

  35. D Pal and B Talukdar Central Eur. J. Phys. 10 1150 (2012)

    ADS  Google Scholar 

  36. D Srinivasacharya and M Upender Chem. Ind. Chem. Eng. Q 20(2) 183 (2014)

    Article  Google Scholar 

  37. T G Cowling Magnetohydrodynamics (New York: Wiley inter Science) (1957)

    MATH  Google Scholar 

  38. O Anwar Bég New Developments in Hydrodynamics Research Ch1. 1 (eds.) Maximiano J Ibragimov and A Anisimov (New York: Nova Science) (2012)

  39. T Adunson and B Gebhart J. Fluid Mech. 52 57 (1972)

    Article  ADS  Google Scholar 

  40. A Rapits and C Perdikis ZAMP 78 277 (1998)

    Google Scholar 

  41. R Cortell Chin. Phys. Lett. 25 1340 (2008)

    Article  Google Scholar 

  42. S R Rao The Finite Element Method in Engineering, 2nd edn. (Exeter USA: BPCC Wheatons Ltd.) (1989)

    MATH  Google Scholar 

  43. J N Reddy An Introduction to the Finite Element Method (New York: McGraw-Hill) (1985)

    MATH  Google Scholar 

  44. O Anwar Bég, M M Rashidi and R Bhargava Numerical Simulation in Micropolar Fluid Dynamics Lambert: 288 pp, Germany: Sarbrucken (2011)

  45. D Gupta, L Kumar, O Anwar Bég and B Singh Comput. Therm. Sci. 6 (2) 155 (2014)

    Article  Google Scholar 

  46. O Anwar Bég, S Rawat, J Zueco, L Osmond and R S R Gorla Theor. Appl. Mech. 41(1) 1 (2014)

    Article  Google Scholar 

  47. R Bhargava, S Sharma, P Bhargava, O Anwar Bég and A Kadir Int. J. Appl. Comput. Math. (2016). DOI: 10.1007/s40819-106-0180-9 (13 pages)

  48. J Zueco, O Anwar Bég and H S Takhar Comput. Mater. Sci. 46(4) 1028 (2009)

    Article  Google Scholar 

  49. A Mohammadein, M A El-Hakiem, S M M El-Kabeir and M A Mansour Int. J. Appl. Mech. Eng. 2 187 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MD. Shamshuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamshuddin, M., Anwar Bég, O., Sunder Ram, M. et al. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media. Indian J Phys 92, 215–230 (2018). https://doi.org/10.1007/s12648-017-1095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1095-y

Keywords

PACS Nos.

Navigation