Skip to main content
Log in

Magnetohydrodynamic Radiative Simulations of Eyring–Powell Micropolar Fluid from an Isothermal Cone

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The magnetohydrodynamics thermal convection viscoelastic micropolar fluid from an isothermal cone is presented in this article. Greater temperature invokes radiation impacts that are studied by approximating Rosseland diffusion flux. To explain the non-Newtonian dynamics of the fluid, the Eyring–Powell viscoelastic model is employed that gives a great analogy for magnetic polymers. In order to simulate the polymer’s microstructural and shearing features, the Eringen’s micropolar Eyring–Powell fluid models are coupled. The Keller-Box scheme is used to solve the dimensionless couple conservation equations. Validation using previously published Newtonian solutions is also included. The fluctuations of velocity, angular velocity, temperature, concentration, skin friction, wall couple stress, heat and mass transfer rates are studied using graphical and tabulated findings. The computational modelling presented here have implications in hot polymer coating processes and industrial deposition procedures and they serve as a good reference for more generic computational fluid dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

A data availability statement is mandatory for publication in this journal. Please confirm that this statement is accurate, or provide an alternative.

Abbreviations

A :

Half angle of the cone

r(x):

Radius of the cone

B 0 :

Imposed magnetic field

B :

Micropolar inertia density

C :

Fluid concentration

C 1 :

Rheological fluid parameter

C f :

Skin friction coefficient

c p :

Specific heat [J/(K kg)]

D m :

Mass diffusivity

f :

Dimensionless stream function

g 1 :

Gravitational acceleration (m/s2)

g :

Dimensionless angular velocity (micro-rotation)

Gr x :

Local Grashof number

j :

Microinertial density

k 1 :

Vortex viscosity

k* :

The mean absorption coefficient

k :

Thermal conductivity of the fluid [W/(m k)]

K :

Eringen vortex viscosity parameter

M :

Magnetic parameter

N :

Microrotation velocity

Nu :

Heat transfer coefficient

Pr :

Prandtl number

q r :

Radiative heat flux

Sc :

Schmidt number

Sh :

Mass transfer coefficient

f 1 :

Body force per unit mass vector

l :

Body couple per unit mass vector

P :

Thermodynamic pressure

F :

Radiation parameter

T :

Fluid temperature

u, v :

Dimensionless velocity components in X, Y directions (m/s2)

V :

Velocity vector

Wcs :

Wall couple stress

x :

Stream wise coordinate

y :

Transverse coordinate

α :

Thermal diffusivity (m2/s)

β :

Eyring–Powell fluid parameter

β 1 :

Coefficient of thermal expansion (ppm/°F)

δ :

Local non-Newtonian parameter

θ :

Dimensionless temperature

ε :

Rheological fluid parameter

ϕ :

Dimensionless concentration

η :

Dimensionless radial coordinate

ν :

Kinematic viscosity (Ns/m2)

μ :

Dynamic viscosity (Ns/m2)

ρ :

Fluid density (kg/m3)

σ * :

The Stefan–Boltzmann constant (W/m2 K4)

ξ :

Dimensionless tangential coordinate

ψ :

Dimensionless stream function

λ :

Eringen second order viscosity coefficient

α*, β*, γ :

Spin gradient viscosity coefficients

w :

Surface condition on cone

:

Free stream conditions

References

  1. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2, 205–217 (1964)

    Article  MathSciNet  Google Scholar 

  2. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  3. Eringen, A.C.: Micro-continuum Field Theories- II: Fluent Media. Springer, Berlin (2001)

    MATH  Google Scholar 

  4. Habib, D., Abdal, S., Ali, R., Baleanu, D., Siddique, I.: On bioconvection and mass transpiration of micropolar nanofluid dynamics due to an extending surface in existence of thermal radiations. Case Stud. Thermal Eng. 27, 101239 (2021)

    Article  Google Scholar 

  5. Yadav, P.K., Kumar, A.: An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit. Int. Commun. Heat Mass Transf. 124, 105266 (2021)

    Article  Google Scholar 

  6. Ramesh, G.K., Roopa, G.S., Rauf, A., Shehzad, S.A., Abbasi, F.M.: Time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction and slip effects. Int. Commun. Heat Mass Transf. 126, 105470 (2021)

    Article  Google Scholar 

  7. Nabwey, H.A., Mahdy, A.: Transient flow of micropolar dusty hybrid nanofluid loaded with Fe304-Ag nanoparticles through a porous stretching sheet. Results Phys. 21, 103777 (2021)

    Article  Google Scholar 

  8. Singh, K., Pandey, A.K., Kumar, M.: Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method. Propuls. Power Res. 10(2), 194–207 (2021)

    Article  Google Scholar 

  9. Khader, M.M., Sharma, R.P.: Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: implementing fourth order predictor-corrector FDM. Math. Comput. Simul. 181, 333–350 (2021)

    Article  MathSciNet  Google Scholar 

  10. Bég, O.A., Vasu, B., Ray, A.K., Beg, T.A., Kadir, A., Leonard, H.J., Gorla, R.S.R.: Homotopy simulation of dissipative micropolar flow and heat transfer from a two-dimensional body with heat sink effect: applications in polymer coating. Chem. Biochem. Eng. Q. 34(4), 257–275 (2020)

    Article  Google Scholar 

  11. Anwar Beg, O., Ferdows, M., Enamul Karim, M., Maruf Hasan, M., Bég, T.A., Shamshuddin, M.D., Kadir, A.: Computation of non-isothermal thermo-convective micropolar fluid dynamics in a hall MHD generator system with non-linear distending wall. Int. J. Appl. Comput. Math 6, 42 (2020). https://doi.org/10.1007/s40819-020-0792-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Nabwey, A., Mahdy, A.: Numerical approach of micropolar dust-particles natural convection fluid flow due to a permeable cone with nonlinear temperature. Alex. Eng. J. 60, 1739–1749 (2021)

    Article  Google Scholar 

  13. Sarala Devi, T., Venkata Lakshmi, C., Venkatadri, K., Suryanarayana Reddy, M.: Influence of enternal magnetic wire on natural convection of non-Newtonian fluid in a square cavity. Partial Differ. Equ. Appl. Math. 4, 100041 (2021)

    Article  Google Scholar 

  14. Ge-JiLe, Hu., Nazeer, M., Hussain, F., et al.: Two-phase flow of MHD Jeffery fluid with the suspension of tiny metallic particles incorporated with viscous dissipation and porous medium. Adv. Mech. Eng. 3(3), 1–15 (2021). https://doi.org/10.1177/16878140211005960

    Article  Google Scholar 

  15. Olabode, J.O., Idown, A.S., Akolade, M.T., Titiloye, E.O.: Unsteady flow analysis of Maxwell fluid with temperature dependent variable properties and quadratic thermo-solutal convection influence. Partial Differ. Equ. Appl. Math. 4, 100078 (2021)

    Article  Google Scholar 

  16. Khan, M., Rasheed, A., Salahuddin, T., Ali, S.: Chemically reactive flow of hyperbolic tangent fluid flow having thermal radiation and double stratification embedded in porous medium. Ain Shams Eng. J. (2021). https://doi.org/10.1016/j.asej.2021.02.017

    Article  Google Scholar 

  17. Kudenatti, R.B., Misbah, N.E.: Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach. Sci. Rep., 10, Article number 9445 (2020)

  18. Peng, S., Li, J.-y, Xiong, Y.-L., Xiao-yang, Xu., Peng, Yu.: Numerical simulation of two-dimensional unsteady Giesekus flow over a circular cylinder. J. Nonnewton. Fluid Mech. 294, 104571 (2021)

    Article  MathSciNet  Google Scholar 

  19. UsmanRashid, M., Mustafa, M.: A study of heat transfer and entropy generation in von Karman flow of Reiner-Rivlin fluid due to stretchable disk. Ain Shams Eng. J. 12(1), 875–883 (2021)

    Article  Google Scholar 

  20. Tanveer, A., Hayat, T., Alsaedi, A.: Numerical simulation for peristalsis of Sisko nanofluid in curved channel with double-diffusive convection. Ain Shams Eng. J. (2021). https://doi.org/10.1016/j.asej.2020.12.019

    Article  Google Scholar 

  21. Reima, D., et al.: Mathematical analysis of Carreau fluid flow and heat transfer within an eccentric catheterized artery. Alex. Eng. J. 61(1), 523–539 (2022)

    Article  Google Scholar 

  22. Abdul Gaffar, S., Anwar Beg, O., Ramachandra Prasad, V.: Mathematical modeling of natural convection in a third grade viscoelastic micropolar fluid from an isothermal inverted cone. Iran. J. Sci. Technol. Trans. Mech. Eng. 44, 383–402 (2020). https://doi.org/10.1007/s40997-018-0262-x

    Article  Google Scholar 

  23. Powell, R.E., Eyring, H.: Mechanisms for the relaxation theory of viscosity. Nature 154(3909), 427–428 (1944). https://doi.org/10.1038/154427a0

    Article  Google Scholar 

  24. HidayathullaKhan, B.M., Abdul Gaffar, S., Anwar Beg, O., et al.: Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone: thermal polymer coating simulation. Comput. Therm. Sci. 12(4), 329–3447 (2020). https://doi.org/10.1615/ComputThermalScien.2020033860

    Article  Google Scholar 

  25. Haldar, S., Mukhopadhyay, S., Layek, G.C.: Effects of thermal radiation on Eyring-Powell fluid flow and heat transfer over a power-law stretching permeable surface. Int. J. Comput. Methods Eng. Sci. Mech. (2021). https://doi.org/10.1080/15502287.2021.1887403

    Article  MathSciNet  Google Scholar 

  26. Abbas, W., Megahed, A.M.: Powell-Eyring fluid flow over a stratified sheet through porous medium with thermal radiation and viscous dissipation. AIMS Math. (2021). https://doi.org/10.3934/math.2021780

    Article  MathSciNet  MATH  Google Scholar 

  27. Bilal, M., Ashbar, S.: Flow and heat transfer analysis of Eyring–Powell fluid over stratified sheet with mixed convection. J. Egypt. Math. Soc. 28, 40 (2020)

    Article  MathSciNet  Google Scholar 

  28. Mustafa, T.: Eyring–Powell fluid flow through a circular pipe and heat transfer: full solutions. Int. J. Numer. Methods Heat Fluid Flow 30(11), 4765–4774 (2020)

    Article  Google Scholar 

  29. Ray, A.K., Vasu, B., Murthy, P.V.S.N., Gorla, R.S.R.: Non-similar solution of Eyring-Powell fluid flow and heat transfer with convective boundary condition: homotopy analysis method. Int. J. Appl. Comput. Math. 6, 16 (2020)

    Article  MathSciNet  Google Scholar 

  30. Muhammad, T., Waqas, H., Khan, S.A., Ellahi, R., Sait, S.M.: Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy. J. Therm Anal. Calorim. 143, 929–944 (2021)

    Article  Google Scholar 

  31. Tzirtzilakis, E.E.: A mathematical model for blood flow in magnetic field. Phys. Fluid. 17(7), 077103 (2005)

    Article  MathSciNet  Google Scholar 

  32. Fatunmbi, E.O.: Magnetohydrodynamic micropolar fluid flow in a porous medium with multiple slip conditions. Int. Commun. Heat Mass Transf. 115, 104577 (2021)

    Article  Google Scholar 

  33. Singh, K., et al.: Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ionslip currents: an analytic approach. Propuls. Power Res. 9(3), 289–303 (2020)

    Article  Google Scholar 

  34. Abbas, Z., Rafiq, M.Y., Alshomrani, A.S., Ullah, M.Z.: Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Stud. Therm. Eng. 23, 100817 (2021)

    Article  Google Scholar 

  35. Hussain, Z., Hayat, T., Alsaedi, A., Ullah,: On MHD convective flow of Williamson fluid with homogenerous-heterogeneous reactions: a comparative study of sheet and cylinder. Int. Commun. Heat Mass Transf. 120, 105060 (2021)

    Article  Google Scholar 

  36. Armaghani, T., Sadeghi, M.S., Rashad, A.M., Mansour, M.A., Chamkha, A.J., Dogonchi, A.S., Nabwey, H.A.: MHD mixed convection of localized heat source/sink in an Al203-Cu/water hybrid nanofluid in L-shaped cavity. Alex. Eng. J. 60, 2947–2962 (2021)

    Article  Google Scholar 

  37. Sharma, R.P., Mishra, S.R.: A numerical simulation for the control of radiative heat energy and thermophoretic effects on MHD micropolar fluid with heat source. J. Ocean Eng. Sci. (2021). https://doi.org/10.1016/j.joes.2021.07.003

    Article  Google Scholar 

  38. Sreedevi, P., Sudarsana Reddy, P.: Effect of magnetic field and thermal radiation on natural convection in a square cavity filled withTiO2nanoparticles using Tiwari-Das nanofluid model. Alex. Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.06.055

    Article  Google Scholar 

  39. Siddiqui, B.K., Batool, S., Malik, M.Y., Mahmood ul Hassan, Q., Alqahtani, A.S.: Darcy Forchheimer bioconvection flow of Casson nanofluid due to a rotating and stretchingdisk together with thermal radiation and entropy generation. Case Stud. Therm. Eng. (2021). https://doi.org/10.1016/j.csite.2021.101201

    Article  Google Scholar 

  40. Waqas, H., Khan, S.A., Farooq, U., Khan, I., Alotaibi, H., Khan, A.: Melting phenomenon of non-linear radiative generalized second grade nanoliquid. Case Stud. Therm. Eng. 26, 101011 (2021). https://doi.org/10.1016/j.csite.2021.101011

    Article  Google Scholar 

  41. Al-Mdalla, Q.M., et al.: Ree-Eyring fluid flow of Cu-water nanofluid between infinite spinning disks with an effect of thermal radiation. Ain Shams Eng. J. (2021). https://doi.org/10.1016/j.asej.2020.12.016

    Article  Google Scholar 

  42. Majeed, A., Zeeshan, A., Amin, N., Ijaz, N., Saeed, T.: Thermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy. J. Therm. Anal. Calorim. 143, 2545–2556 (2021)

    Article  Google Scholar 

  43. Keller, H.B.: Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10, 417–433 (1978). https://doi.org/10.1146/annurev.fl.10.010178.002221

    Article  MathSciNet  Google Scholar 

  44. Hossain, M.A., Paul, S.C.: Free convection from a vertical permeable circular cone with non-uniform surface temperature. Acta Mech. 151, 103–114 (2001)

    Article  Google Scholar 

  45. Powell, R.E., Eyring, H.: Mechanism for relaxation theory of viscosity. Nature 154, 427–428 (1944)

    Article  Google Scholar 

  46. Beg, O.A., Bhargava, R., Rashidi, M.M.: Numerical Simulation in Micropolar Fluid Dynamics. Lambert, Saarbrucken

  47. Gorla, R.S.R.: Radiative effect on conjugate forced convection in a laminar wall jet along a flat plate. In: Encyclopedia Fluid Mechanics, Suppl. 3: Advances in Flows Dynamics, Gulf Publishing, Texas, USA (1993)

  48. Bég, O., Anwar, J., Zueco, S.K., et al.: Unsteady magnetohydrodynamic heat transfer in a semi-infinite porous medium with thermal radiation flux: analytical and numerical study. Adv. Numer. Anal. 2011, 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  49. Vedavathi, N., Dharmaiah, G., Abdul Gaffar, S., Venkatadri, K.: Entropy analysis of nanofluid magnetohydrodynamic convection flow past an inclined surface: a numerical review. Heat Transf. J. 50(6), 5996–6021 (2021)

    Article  Google Scholar 

  50. Vedavathi, N., Dharmaiah, G., Abdul Gaffar, S., Venkatadri, K.: Entropy analysis of magnetohydrodynamic nanofluid transport from an inverted cone: Buongiorno’s model. Heat Transf. J. 50(4), 3119–3153 (2021). https://doi.org/10.1002/htj.22021

    Article  Google Scholar 

  51. Ramesh Reddy, P., Abdul Gaffar, S., Anwar Beg, O., Hidayathulla Khan, B.M.: Hall and ionslip effects on nanofluid transport from a vertical surface: Buongiorno’s model. ZAMM (2021). https://doi.org/10.1002/zamm.202000174

    Article  Google Scholar 

  52. Khan, N.M., Abidi, A., Khan, I., Alotaibi, F., Alghtani, A.H., Aljohani, M.A.: Dynamics of radiative Eyring–Powell MHD nanofluid containing gyrotactic microorganisms exposed to surface suction and viscosity variation. Case Stud. Therm. Eng. 28, 101659 (2021)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdul Gaffar.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Keller Box Numerical Details

Appendix A: Keller Box Numerical Details

The Keller Box Scheme comprises four stages:

  1. 1.

    Decomposition of the Nth order partial differential equation system to N first order equations.

  2. 2.

    Finite difference discretization.

  3. 3.

    Quasilinearization of non-linear Keller algebraic equations and finally.

  4. 4.

    Block-tridiagonal elimination solution of the linearized Keller algebraic equations.

The algebraic details for the present problem are provided in “Appendix A”. A typical mesh is given in Fig. 21 below.

Fig. 21
figure 21

Keller box computational cell

Stage 1: Decomposition of Nth Order Partial Differential Equation System to N First Order Equations

Equations (15) to (18) subject to the boundary conditions (19) are first cast as a multiple system of first order differential equations. New dependent variables are introduced:

$$ u(x,y) = f^{\prime } ,\,\,v(x,y) = f^{\prime \prime } ,\,\,s(x,y) = \theta ,\,\,t(x,y) = \theta^{\prime } ,\,\,z(x,y) = \phi ,\,\,m(x,y) = \phi^{\prime } $$
(24)

These denote the variables for velocity, temperature and concentration respectively. Now Eqs. (15) to (18) are solved as a set of fifth order simultaneous differential equations:

$$ f^{\prime } = u $$
(25)
$$ u^{\prime } = v $$
(26)
$$ g^{\prime } = p $$
(27)
$$ s^{\prime } = t $$
(28)
$$ z^{\prime } = m $$
(29)
$$ \left( {1 + K + \varepsilon } \right)v^{\prime}\, + \frac{7}{4}fv + \xi v - \frac{1}{2}\left( u \right)^{2} - \varepsilon \delta \left( v \right)^{2} v^{\prime} + s + Nz + Kp - M\xi^{2} u = \,\frac{\xi }{4}\left( {u\frac{\partial u}{{\partial \xi }} - v\frac{\partial f}{{\partial \xi }}} \right) $$
(30)
$$ \left( {1 + \frac{K}{2}} \right)p^{\prime}\, + \frac{7}{4}fp - \frac{1}{4}ug + \xi p - BK\xi^{2} \left( {2g + v} \right) = \,\frac{\xi }{4}\left( {u\frac{\partial g}{{\partial \xi }} - p\frac{\partial f}{{\partial \xi }}} \right) $$
(31)
$$ \frac{t^{\prime}}{{{\text{Pr}}}}\left( {1 + \frac{4}{3F}} \right) + \frac{7}{4}ft + \xi t = \frac{\xi }{4}\left( {u\frac{\partial s}{{\partial \xi }} - t\frac{\partial f}{{\partial \xi }}} \right) $$
(32)
$$ \frac{m^{\prime}}{{Sc}} + \frac{7}{4}fm + \xi m = \frac{\xi }{4}\left( {u\frac{\partial \phi }{{\partial \xi }} - m\frac{\partial f}{{\partial \xi }}} \right) $$
(33)

where primes denote differentiation with respect to the variable, η. In terms of the dependent variables, the boundary conditions assume the form:

$$ \begin{aligned} & At\,\,\,\,\,\,\eta = 0,\,\,\,\,\,\,\,\,\,\,\,\,f = 0,\,\,\,\,\,\,\,\,\,v = 0,\,\,\,\,\,\,\,\,\,g = \frac{1}{2}\frac{{\partial^{2} f}}{{\partial y^{2} }},\,\,\,\,\,\,\,\,s = 1,\,\,\,\,\,\,z = 1 \\ & As\,\,\,\,\,\,\eta \to \infty ,\,\,\,\,\,\,\,v \to 0,\,\,\,\,\,\,\,g \to 0,\,\,\,\,\,\,\,\,\,s \to 0,\,\,\,\,\,\,\,\,\,\,z = 0. \\ \end{aligned} $$
(34)

Stage 2: Finite Difference Discretization

A two dimensional computational grid is imposed on the ξ–η plane as depicted in Fig. 20. The stepping process is defined by:

$$ \begin{gathered} \eta_{0} = 0,\,\,\,\,\,\eta_{i} = \eta_{i - 1} + h_{j} ,\,\,\,\,\,\,\,j = 1,2, \ldots ,J,\,\,\,\,\,\,\,\,\,\eta_{J} \equiv \eta_{\infty } \hfill \\ \xi^{0} = 0,\,\,\,\,\,\xi^{n} = \xi^{n - 1} + k_{n} ,\,\,\,\,\,n = 1,2, \ldots ,N \hfill \\ \end{gathered} $$
(35)

where kn and hjdenote the step distances in the ξ and η directions respectively. If \(g_{j}^{n}\) denotes the value of any variable at \(\left( {\eta_{j} ,\xi^{n} } \right)\), then the variables and derivatives of Eqs. (25) to (33) at \(\left( {\eta_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} ,\xi^{{n - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} } \right)\) are replaced by:

$$ g_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{n - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} = \frac{1}{4}\left[ {g_{j}^{n} + g_{j - 1}^{n} + g_{j}^{n - 1} + g_{j - 1}^{n - 1} } \right] $$
(36)
$$ \left( {\frac{\partial g}{{\partial \eta }}} \right)_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{n - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} = \frac{1}{{2h_{j} }}\left[ {g_{j}^{n} - g_{j - 1}^{n} + g_{j}^{n - 1} - g_{j - 1}^{n - 1} } \right] $$
(37)
$$ \left( {\frac{\partial g}{{\partial \xi }}} \right)_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{n - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} = \frac{1}{{2k^{n} }}\left[ {g_{j}^{n} - g_{j - 1}^{n} + g_{j}^{n - 1} - g_{j - 1}^{n - 1} } \right] $$
(38)

The resulting finite-difference approximation of Eqs. (16) to (20) for the mid-point \(\left( {\eta_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} ,\xi^{n} } \right)\), take the form:

$$ h_{j}^{ - 1} \left( {f_{j}^{n} - f_{j - 1}^{n} } \right) = u_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n} $$
(39)
$$ h_{j}^{ - 1} \left( {u_{j}^{n} - u_{j - 1}^{n} } \right) = v_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n} $$
(40)
$$ h_{j}^{ - 1} \left( {g_{j}^{n} - g_{j - 1}^{n} } \right) = p_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n} $$
(41)
$$ h_{j}^{ - 1} \left( {s_{j}^{n} - s_{j - 1}^{n} } \right) = t_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n} $$
(42)
$$ h_{j}^{ - 1} \left( {z_{j}^{n} - z_{j - 1}^{n} } \right) = m_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n} $$
(43)
$$ \left( {1 + K + \varepsilon } \right)\left( {v_{j} - v_{j - 1} } \right)\, + \frac{7 + \alpha }{4}\frac{{h_{j} }}{4}\left( {f_{j} + f_{j - 1} } \right)\left( {v_{j} + v_{j - 1} } \right) + \xi \frac{{h_{j} }}{2}\left( {v_{j} + v_{j - 1} } \right) - \left( {\frac{1}{2} + \frac{\alpha }{4}} \right)\frac{{h_{j} }}{4}\left( {u_{j} + u_{j - 1} } \right)^{2} - \varepsilon \delta \left( {v_{j} + v_{j - 1} } \right)^{2} \left( {v_{j} - v_{j - 1} } \right) + \frac{{h_{j} }}{2}\left( {s_{j} + s_{j - 1} } \right) + N\frac{{h_{j} }}{2}\left( {z_{j} + z_{j - 1} } \right) + K\frac{{h_{j} }}{2}\left( {p_{j} + p_{j - 1} } \right) - M\xi^{2} \frac{{h_{j} }}{2}\left( {u_{j} + u_{j - 1} } \right) = \,\left[ {R_{1} } \right]_{j - /12}^{n - 1} $$
(44)
$$\begin{aligned} &\left( {1 + \frac{K}{2}} \right) \left( {p_{j} - p_{j - 1} } \right) + \frac{7 + \alpha }{4}\left( {f_{j} + f_{j - 1} } \right)\left( {p_{j} + p_{j - 1} } \right) + \xi \left( {p_{j} + p_{j - 1} } \right)\\ &\quad - \frac{1 + \alpha }{4}\left( {u_{j} + u_{j - 1} } \right)\left( {g_{j} + g_{j - 1} } \right) - BK\xi^{2} \left( {2\left( {g_{j} + g_{j - 1} } \right) + \left( {v_{j} + v_{j - 1} } \right)} \right) + \frac{\alpha }{4}g_{{j - 1/2}}^{n - 1} \left( {g_{j} + g_{j - 1} } \right)\\ &\quad - \frac{\alpha }{4}f_{{j - 1/2}}^{n - 1} \left( {f_{j} + f_{j - 1} } \right) = \,\,\left[ {R_{2} } \right]_{j - /12}^{n - 1}\end{aligned}$$
(45)
$$\begin{aligned} &\frac{1}{{{\text{Pr}}}}\left( {1 + \frac{4}{3F}} \right)\left( {t_{j} - t_{j - 1} } \right) + \frac{7 + \alpha }{4}\left( {f_{j} + f_{j - 1} } \right)\left( {t_{j} + t_{j - 1} } \right) + \xi \left( {t_{j} + t_{j - 1} } \right)\\ &\quad - \frac{\alpha }{4}\left( {u_{j} + u_{j - 1} } \right)\left( {s_{j} + s_{j - 1} } \right) + \frac{\alpha }{4}s_{{j - {1/2}}}^{n - 1} \left( {u_{j} + u_{j - 1} } \right)\\ &\quad - \frac{\alpha }{4}u_{{j - {1/2}}}^{n - 1} \left( {f_{j} + f_{j - 1} } \right) = \left[ {R_{3} } \right]_{j - /12}^{n - 1}\end{aligned} $$
(46)
$$\begin{aligned} &\frac{1}{Sc}\left( {m_{j} - m_{j - 1} } \right) + \frac{7 + \alpha }{4}\left( {f_{j} + f_{j - 1} } \right)\left( {m_{j} + m_{j - 1} } \right) + \xi \left( {m_{j} + m_{j - 1} } \right)\\ &\quad - \frac{\alpha }{4}\left( {u_{j} + u_{j - 1} } \right)\left( {z_{j} + z_{j - 1} } \right) + \frac{\alpha }{4}z_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n - 1} \left( {u_{j} + u_{j - 1} } \right) - \frac{\alpha }{4}u_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n - 1} \left( {z_{j} + z_{j - 1} } \right)\\ &\quad - \frac{\alpha }{4}f_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n - 1} \left( {m_{j} + m_{j - 1} } \right) + \frac{\alpha }{4}m_{{j - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}}^{n - 1} \left( {f_{j} + f_{j - 1} } \right) = \left[ {R_{4} } \right]_{j - /12}^{n - 1}\end{aligned} $$
(47)

where the following notation applies:

$$ \alpha = \frac{{\xi^{{n - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}} }}{{k^{n} }} $$
(48)
$$\begin{aligned} \left[ {R_{1} } \right]_{j - 1/2}^{n - 1} &= - h_{j} \Bigg[ \left( {1 + K + \varepsilon } \right)\left( {v^{\prime}} \right)_{j - 1/2}^{n - 1} + \left( {\frac{7 - \alpha }{4}} \right)\left( {fv} \right)_{j - 1/2}^{n - 1} + \xi v_{j - 1/2}^{n - 1} \\ &\quad - \left( {\frac{1}{2} - \frac{\alpha }{4}} \right)\left( {u_{j - 1/2}^{n - 1} } \right)^{2} - \varepsilon \delta \left( {v^{2} } \right)_{j - 1/2}^{n - 1} \left( {v^{\prime}} \right)_{j - 1/2}^{n - 1} + s_{j - 1/2}^{n - 1}\\ &\quad + Nz_{j - 1/2}^{n - 1} + Kp_{j - 1/2}^{n - 1} - M\xi^{2} u_{j - 1/2}^{n - 1} \Bigg] \end{aligned}$$
(49)
$$\begin{aligned} \left[ {R_{2} } \right]_{j - 1/2}^{n - 1} &= - h_{j} \Bigg[\left( {1 + \frac{K}{2}} \right)\left( {p^{\prime}} \right)_{j - 1/2}^{n - 1} + \left( {\frac{7 - \alpha }{4}} \right)\left( {fp} \right)_{j - 1/2}^{n - 1} + \xi p_{j - 1/2}^{n - 1}\\ &\quad - \left( {\frac{1 - \alpha }{4}} \right)\left( {gu} \right)_{j - 1/2}^{n - 1} - KB\xi^{2} \left( {2g_{j - 1/2}^{n - 1} + v_{j - 1/2}^{n - 1} } \right)\Bigg] \end{aligned}$$
(50)
$$ \left[ {R_{3} } \right]_{j - 1/2}^{n - 1} = - h_{j} \left[ {\frac{1}{\Pr }\left( {1 + \frac{4}{3F}} \right)\left( {t^{\prime}} \right)_{j - 1/2}^{n - 1} + \frac{{\left( {7 - \alpha } \right)}}{4}\left( {ft} \right)_{j - 1/2}^{n - 1} + \xi t_{j - 1/2}^{n - 1} + \frac{\alpha }{4}\,\left( {us} \right)_{j - 1/2}^{n - 1} } \right] $$
(51)
$$ \left[ {R_{4} } \right]_{j - 1/2}^{n - 1} = - h_{j} \left[ {\frac{1}{Sc}\left( {m^{\prime}} \right)_{j - 1/2}^{n - 1} + \frac{{\left( {7 - \alpha } \right)}}{4}\left( {fm} \right)_{j - 1/2}^{n - 1} + \xi m_{j - 1/2}^{n - 1} + \frac{\alpha }{4}\,\left( {uz} \right)_{j - 1/2}^{n - 1} } \right] $$
(52)

The boundary conditions are:

$$ f_{0}^{n} = u_{0}^{n} = 0,\,\,\,\,g_{0}^{n} = 1,\,\,\,\,s_{0}^{n} = 1,\,\,\,\,\,m_{0}^{n} = 1,\,\,\,\,u_{J}^{n} = 0,\,\,\,\,v_{J}^{n} = 0,\,\,\,\,s_{J}^{n} = 0,\,\,\,m_{J}^{n} = 0\,. $$
(53)

Step 3: Quasilinearization of Non-linear Keller Algebraic Equations

Assuming \(f_{j}^{n - 1} ,u_{j}^{n - 1} ,v_{j}^{n - 1} ,s_{j}^{n - 1} ,t_{j}^{n - 1}\) to be known for 0 ≤ j ≤ J, then Eqs. (39) to (47) constitute a system of 5 J + 5 equations for the solution of 5 J + 5 unknowns \(f_{j}^{n} ,u_{j}^{n} ,v_{j}^{n} ,s_{j}^{n} ,t_{j}^{n}\), j = 0, 1, 2 …, J. This non-linear system of algebraic equations is linearized by means of Newton’s method as explained in [22, 43].

Step 4: Block-Tridiagonal Elimination of Linear Keller Algebraic Equations

The linearized system is solved by the block-elimination method owing to its block-tridiagonal structure. The block-tridiagonal structure generated consists of block matrices. The complete linearized system is formulated as a block matrix system, where each element in the coefficient matrix is a matrix itself, and this system is solved using the efficient Keller-box method. The numerical results are strongly influenced by the number of mesh points in both directions. After some trials in the η-direction (radial coordinate) a larger number of mesh points are selected whereas in the ξ-direction (tangential coordinate) significantly less mesh points are necessary. ηmax has been set at 16 and this constitutes an adequately large value at which the prescribed boundary conditions are satisfied. ξmax is set at 3.0 for the simulations. Mesh independence has been comfortably attained in the simulations. The numerical algorithm is executed in MATLAB on a PC. The method demonstrates excellent stability, convergence and consistency, as elaborated by Keller [43].

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanke, J.A., Kumar, K.T., Srilatha, P. et al. Magnetohydrodynamic Radiative Simulations of Eyring–Powell Micropolar Fluid from an Isothermal Cone. Int. J. Appl. Comput. Math 8, 232 (2022). https://doi.org/10.1007/s40819-022-01436-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01436-9

Keywords

Navigation