Skip to main content
Log in

Estimation of the reduction of sputtering for fusion grade materials after disappearance of the Debye sheath

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of grazing angle on a solid surface (divertor) erosion due to ion sputtering is studied by 1D-3V fluid approach. For an oblique magnetic field, there exists a region in front of the solid surface called Chodura sheath (CS). It is assumed that the CS is additive to the Debye sheath (DS). For a certain value of the grazing angle, it has been observed that the DS vanishes and the entire potential drop occurs across the CS. This new analysis of the event provides some facts of pragmatic importance in improving the solutions of edge impurity codes. Important factors, such as ion energy, impact angle for physical sputtering are highlighted. The dependence of these two parameters on the grazing angle is also investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P C Stangeby The Plasma Boundary of Magnetic Fusion Devices (London: CRC Press) (2000)

    Book  Google Scholar 

  2. A S Kukushkin et al. Fusion Eng. Des. 65 355 (2003)

    Article  Google Scholar 

  3. R Tivey et al. Fusion Eng. Des. 55 219 (2001)

    Article  Google Scholar 

  4. G Federici et al. Nucl. Fusion 41 1967 (2001)

    Article  ADS  Google Scholar 

  5. K Krieger, H Maier and R Neu J. Nucl. Mater. 266269 207 (1999)

    Article  Google Scholar 

  6. V V Vasil’ev and V S Vojtsenya J. Nucl. Mater. 137 167 (1986)

    Article  ADS  Google Scholar 

  7. S Devaux and G Manfredi Plasma Phys. Control. Fusion 50 25009 (2008)

    Article  Google Scholar 

  8. R Chodura Phys. Fluids 25 1628 (1982)

    Article  ADS  Google Scholar 

  9. R Chalise and R Khanal Phys. Plasmas 22 113505 (2015)

    Article  ADS  Google Scholar 

  10. K S Chung and I H Hutchinson Phys. Rev. A 38 4721 (1988)

    Article  ADS  Google Scholar 

  11. K U Riemann J. Phys. D. Appl. Phys. 24 493 (2000)

    Article  ADS  Google Scholar 

  12. D Tskhakaya, B Eliasson, P K Shukla and S Kuhn Phys. Plasmas 11 3945 (2004)

    Article  ADS  Google Scholar 

  13. S Devaux and G Manfredi Phys. Plasmas 13 83504 (2006)

    Article  Google Scholar 

  14. J Kovačič, T Gyergyek and M Čerček Eur. Phys. J. D 54 383 (2009)

    ADS  Google Scholar 

  15. F Valsaque and G Manfredi J. Nucl. Mater. 293 763 (2001)

    Article  ADS  Google Scholar 

  16. D Coulette and G Manfredi Plasma Phys. Control. Fusion 58 25008 (2016)

    Article  Google Scholar 

  17. K U Riemann Phys. Plasmas 1 552 (1994)

    Article  ADS  Google Scholar 

  18. P C Stangeby Nucl. Fusion 52 83012 (2012)

    Article  Google Scholar 

  19. R Moulick and K S Goswami Phys. Plasmas 22 33510 (2015)

    Article  Google Scholar 

  20. H B Valentini Plasma Sources Sci. Technol. 9 574 (2000)

    Article  ADS  Google Scholar 

  21. Y Tomita et al. J. Nucl. Mater. 363365 264 (2007)

    Article  Google Scholar 

  22. P C Stangeby Phys. Plasmas 2, 702 (1995).

    Article  ADS  Google Scholar 

  23. P C Stangeby and A V Chankin Phys. Plasmas 2 707 (1995)

    Article  ADS  Google Scholar 

  24. T Yukihiro et al. J. Plasma Fusion Res. Series 4 578 (2001)

    Google Scholar 

  25. P C Stangeby and A W Leonard Nucl. Fusion 51 63001 (2011)

    Article  Google Scholar 

  26. D Tskhakaya and S Kuhn J. Nucl. Mater. 313316 1119 (2003)

    Article  Google Scholar 

  27. M Warrier, R Schneider and X Bonnin Comput. Phys. Commun. 160 46 (2004)

    Article  ADS  Google Scholar 

  28. J Roth J. Nucl. Mater. 266 51 (1999)

    Article  ADS  Google Scholar 

  29. J Bohdansky Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2 587 (1984)

    Article  ADS  Google Scholar 

  30. W Eckstein and R Preuss J. Nucl. Mater. 320 209 (2003)

    Article  ADS  Google Scholar 

  31. Y Yamamura, Y Itikawa and N Itoh Report on Angular Dependence of Sputtering Yields of Monoatomic Solids (IPP, Nagoya, Japan) (1983)

    Google Scholar 

  32. W Eckstein Report on Sputtered Energy Coefficient and Sputtering Yield (IPP, Garching, Germany) (2011)

  33. J N Brooks Fusion Sci.Technol. 4 33 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Warrier of BARC-Vizag, India, for providing subroutines of the plasma surface interaction and for the helpful discussions during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adhikari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, S., Moulick, R. & Goswami, K.S. Estimation of the reduction of sputtering for fusion grade materials after disappearance of the Debye sheath. Indian J Phys 92, 259–270 (2018). https://doi.org/10.1007/s12648-017-1088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1088-x

Keywords

PACS Nos.

Navigation