Skip to main content
Log in

Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Erosion of the plasma-facing materials in particular evaporation of the materials in a fusion reactor under intense transient events is one of the problems of the ITER. The current experimental data are insufficient to predict the properties of the erosion products, a significant part of which will be formed during transient events (edge-localized modes (ELMs) and disruptions). The paper concerns the experimental investigation of the graphite and tungsten erosion products deposited under pulsed plasma load at the QSPA-T: heat load on the target was 2.6 MJ/m2 with 0.5 ms pulse duration. The designed diagnostics for measuring the deposition rate made it possible to determine that the deposition of eroded material occurs during discharge, and the deposition rate is in the range (0.1–100) × 1019 at/(cm2 s), which is much higher than that for stationary processes. It is found that the relative atomic concentrations D/C and D/(W + C) in the erosion products deposited during the pulse process are on the same level as for the stationary processes. An exposure of erosion products to photonic energy densities typical of those expected at mitigated disruptions in the ITER (pulse duration of 0.5–1 ms, integral energy density of radiation of 0.1–0.5 MJ/m2) significantly decreases the concentration of trapped deuterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Causey et al., J. Nucl. Mater. 300, 91 (2002).

    Article  ADS  Google Scholar 

  2. T. Loarer et al., Nucl. Fusion 47, 1112 (2007).

    Article  ADS  Google Scholar 

  3. G. De. Temmerman and R. P. Doerner, J. Nucl. Mater. 389, 479 (2009).

    Article  ADS  Google Scholar 

  4. V. Kh. Alimov et al., J. Nucl. Mater. 399, 225 (2010).

    Article  ADS  Google Scholar 

  5. L. Begrambekov et al., J. Nucl. Mater. 438, 971 (2013).

    Article  ADS  Google Scholar 

  6. N. Klimov et al., J. Nucl. Mater. 415, 59 (2011).

    Article  ADS  Google Scholar 

  7. B. Riccardi et al., Fusion Eng. Des. 86, 1665 (2011).

    Article  Google Scholar 

  8. M. Mayer et al., J. Nucl. Mater. 390–391, 538 (2009).

    Article  Google Scholar 

  9. N. Klimov et al., J. Nucl. Mater. 438, 241 (2013).

    Article  ADS  Google Scholar 

  10. A. Loarte, G. Saibene, R. Sartori, et al., Physica Scr. 128, 222 (2007).

    Article  Google Scholar 

  11. N. S. Klimov, V. L. Podkovyrov, A. M. Zhitlukhin, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 52 (2009).

    Google Scholar 

  12. N. I. Arkhipov, V. M. Safronov, V. A. Barsuk, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 4, 3 (2009).

    Google Scholar 

  13. V. M. Safronov, et al., J. Nucl. Mater. 386–388, 744 (2009).

    Article  Google Scholar 

  14. I. M. Poznyak, N. I. Arkhipov, S. V. Karelov, et al., Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 70 (2014).

    Google Scholar 

  15. A. Rusinov, Yu. M. Gasparyan, S. F. Perelygin, A. A. Pisarev, S. O. Stepanov, and N. N. Trifonov, Instrum. Exp. Tech. 52, 871 (2009).

    Article  Google Scholar 

  16. S. Krat et al., J. Nucl. Mater. 438, 204 (2013).

    Article  ADS  Google Scholar 

  17. K. Katayama et al., Thin Solid Films 506–507, 188 (2006).

    Article  Google Scholar 

  18. R. Doerner et al., in Proceedings of the 22nd IAEA Fusion Energy Conference, 2008.

    Google Scholar 

  19. H. Youshida et al., J. Nucl. Mater. 329–333, 790 (2004).

    Article  Google Scholar 

  20. W. Eckstein, IPP-Report 9/132 (Garching, Germany, 2002).

    Google Scholar 

  21. N. Klimov et al., J. Nucl. Mater. 390–391, 721 (2009).

    Article  Google Scholar 

  22. B. Bazylev et al., Fusion Eng. Des. 84, 441 (2009).

    Article  Google Scholar 

  23. O. V. Ogorodnikova et al., J. Nucl. Mater. 415, S661 (2011).

    Article  ADS  Google Scholar 

  24. A. Rusinov et al., J. Nucl. Mater. 415, S645 (2011).

    Article  ADS  Google Scholar 

  25. O. V. Ogorodnikova et al., J. Nucl. Mater. 419, 194 (2011).

    Article  ADS  Google Scholar 

  26. T. Schwarz-Selinger, A. von Keudell, and W. Jacob, J. Appl. Phys. 86, 3988 (1999).

    Article  ADS  Google Scholar 

  27. A. B. Putrik et al., in Proceedings of the 16th Conference on Interaction of Plasma with Surface, Moscow, Feb. 1–2, 2013 (NIYaU MIFI, Moscow, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Putrik.

Additional information

Original Russian Text © A.B. Putrik, N.S. Klimov, Yu.M. Gasparyan, V.S. Efimov, V.A. Barsuk, V.L. Podkovyrov, A.M. Zhitlukhin, A.D. Yarochevskaya, D.V. Kovalenko, 2014, published in Voprosy Atomnoi Nauki i Tekhniki. Seriya: Termoyadernyi Sintez, 2014, Vol. 37, No. 3, pp. 15–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putrik, A.B., Klimov, N.S., Gasparyan, Y.M. et al. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them. Phys. Atom. Nuclei 78, 1174–1186 (2015). https://doi.org/10.1134/S1063778815100105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815100105

Keywords

Navigation