Skip to main content
Log in

Optical properties of an inhomogeneously broadened multilevel V-system in the weak and strong probe regimes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We present a theoretical model, using density matrix approach, to study the effect of weak as well as strong probe field on the optical properties of an inhomogeneously broadened multilevel V-system of the \(^{87}\)Rb D2 line. We consider the case of stationary as well as moving atoms and perform thermal averaging at room temperature. The presence of multiple excited states results in asymmetric absorption and dispersion profiles. In the weak probe regime, we observe the partial transparency window due to the constructive interference that occurs between transition pathways at the line center. We present our results after carrying out Doppler averaging at room temperature atomic vapor and observe that the line width of transparency window is enhanced, whereas the positive slope of corresponding dispersion curve become less steep. In the presence of strong probe field, the transparency window (with normal dispersion) at line center switches to enhanced absorption (with anomalous dispersion). Here, we also present the dependence of electromagnetically induced transparency on the polarization of applied fields. In the end, we present transient behavior of our system which agrees with corresponding absorption and dispersion profiles. This study may help to understand optical switching and controllability of group velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K-J Boller, A Imamoğlu and S E Harris Phys. Rev. Lett. 66 2593 (1991)

    Article  ADS  Google Scholar 

  2. S E Harris Phys. Today 50 36 (1997)

    Article  Google Scholar 

  3. A S Zibrov et al. Phys. Rev. Lett. 75 1499 (1995)

    Article  ADS  Google Scholar 

  4. D Braunstein, G A Koganov and R Shuker J. Phys. B At. Mol. Opt. Phys. 44 235402 (2011)

    Article  ADS  Google Scholar 

  5. E Arimondo Prog. Opt. XXXV 257 (1996)

    Article  Google Scholar 

  6. M Fleischhauer, A Imamoglu and J P Marangos Rev. Mod. Phys. 77 663 (2005)

    Article  ADS  Google Scholar 

  7. D Budker and M V Romalis Nat. Phys. 3 227 (2007)

    Article  Google Scholar 

  8. S Menon and G S Agarwal Phys. Rev. A 61 013807 (1999)

    Article  ADS  Google Scholar 

  9. M Bajcsy et al. Phys. Rev. Lett. 102 203902 (2009)

    Article  ADS  Google Scholar 

  10. M Albert, A Dantan and M Drewsen Nat. Photonic 5 633 (2011)

    Article  ADS  Google Scholar 

  11. A Krishna, K Pandey, A Wasan and V Natarajan Europhys. Lett. 72 221 (2005)

    Article  ADS  Google Scholar 

  12. S E Harris, J E Field and A Imamoğlu Phys. Rev. Lett. 64 1107 (1990)

    Article  ADS  Google Scholar 

  13. Y Zhang, B Anderson and M Xiao Phys. Rev. A 77 061801 (2008)

    Article  ADS  Google Scholar 

  14. K M Gheri and D F Walls Phys. Rev. A 49 4134 (1994)

    Article  ADS  Google Scholar 

  15. M Fleischhauer Phys. Rev. Lett. 72 989 (1994)

    Article  ADS  Google Scholar 

  16. G S Agarwal Phys. Rev. Lett. 71 1351 (1993)

    Article  ADS  Google Scholar 

  17. C Liu, Z Dutton, C H Behroozi and L V Hau Nature 409 490 (2001)

    Article  ADS  Google Scholar 

  18. A K Mohapatra, M G Bason, B Butscher, K J Weatherill and C S Adams Nat. Phys. 4 890 (2008)

    Article  Google Scholar 

  19. L V Hau, S E Harris, Z Dutton and C H Behroozi Nature 397 594 (1999)

    Article  ADS  Google Scholar 

  20. L J Wang, A Kuzmich and A Dogariu Nature 406 277 (2000)

    Article  ADS  Google Scholar 

  21. A M Akulshin, S Barreiro and A Lezama Phys. Rev. Lett. 83 4277 (1999)

    Article  ADS  Google Scholar 

  22. J Mompart, C Peters and R Corbalán Quantum Semiclass. Opt. 10 355 (1998)

    Article  ADS  Google Scholar 

  23. A Ray, S Pradhan, K G Manohar and B N Jagatap Laser Phys. 17 1353 (2007)

    Article  ADS  Google Scholar 

  24. G R Welch et al. Found. Phys. 28 621 (1998)

    Article  Google Scholar 

  25. J Zhao, L Wang, L Xio, Y Zhao, W Yin and S Jia Opt. Commun. 206 341 (2002)

    Article  ADS  Google Scholar 

  26. S Vdović, T Ban, D Aumiler and G Pichler Opt. Commun. 272 407 (2007)

    Article  ADS  Google Scholar 

  27. S Mitra, S Dey, M M Hossain, P N Ghosh and B Ray J. Phys. B At. Mol. Opt. Phys. 46 075002 (2013)

    Article  ADS  Google Scholar 

  28. A Lazoudis, T Kirova, E H Ahmed, P Qi, J Huennekens and A M Lyyra Phys. Rev. A 83 063419 (2013)

    Article  ADS  Google Scholar 

  29. M A Kumar and S Singh Phys. Rev. A 87 065801 (2013)

    Article  ADS  Google Scholar 

  30. S D Badger, I G Hughes and C S Adams J. Phys. B At. Mol. Opt. Phys. 34 L749 (2001)

    Article  ADS  Google Scholar 

  31. O S Mishina et al. Phys. Rev. A 83 053809 (2011)

    Article  ADS  Google Scholar 

  32. V Bharti and A Wasan J. Phys. B At. Mol. Opt. Phys. 45 185501 (2012)

    Article  Google Scholar 

  33. V Bharti and A Wasan Opt. Commun. 324 238 (2014)

    Article  ADS  Google Scholar 

  34. P Kaur, V Bharti and A Wasan J. Mod. Opti. 61 1339 (2014)

    Article  ADS  Google Scholar 

  35. S J van Enk, J Zhang and P Lambropoulos Phys. Rev. A 50 2777 (1994)

    Article  ADS  Google Scholar 

  36. A Raczyński, M Rzepecka, J Zaremba and S Zielińska-Kaniasty Opt. Commun. 266 552 (2006)

    Article  ADS  Google Scholar 

  37. K D Quoc, V C Long and W Leoński Phys. Scr. T147 014008 (2012)

    Article  ADS  Google Scholar 

  38. T B Dinh, V C Long, W Leoński and J Peřina Jr Eur. Phys. J. D 68 150 (2014)

    Article  ADS  Google Scholar 

  39. S Wielandy and A L Gaeta Phys. Rev. A 58 2500 (1998)

    Article  ADS  Google Scholar 

  40. K Pandey and V Nataranjan J. Phys. B At. Mol. Opt. Phys. 41 185504 (2008)

    Article  ADS  Google Scholar 

  41. K Pandey, D Kaundilya and V Nataranjan Opt. Commun. 284 252 (2011)

    Article  ADS  Google Scholar 

  42. M Auzinsh, D Budker and S M Rochester Optically Polarized Atoms, 1st edn. (Oxford: Oxford University press) (2010)

  43. M S Safronova and U I Safronova Phys. Rev. A 83 052508 (2011)

    Article  ADS  Google Scholar 

  44. D J Fulton, S Shepherd, R R Moseley, B D Sinclair and M H Dunn Phys. Rev. A 52 2302 (1995)

    Article  ADS  Google Scholar 

  45. S Autler and C H Townes Phys. Rev. 100 703 (1955)

    Article  ADS  Google Scholar 

  46. P M Anisimov, J P Dowling and B C Sanders Phys. Rev. Lett. 107 163604 (2011)

    Article  ADS  Google Scholar 

  47. C Cohen-Tannoudji and S Reynaud J. Phys. B At. Mol. Phys. 10 2311 (1977)

    Article  ADS  Google Scholar 

  48. M Yan, E G Rickey and Y Zhu J. Opt. Soc. Am. B 18 1057 (2001)

    Article  ADS  Google Scholar 

  49. S M Iftiquar, G R Karve and V Natarajan Phys. Rev. A 77 063807 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PK is thankful to the Ministry of Human Resource Development (MHRD), India for the financial assistance. VB acknowledges financial support from a DS Kothari post-doctoral fellowship of the University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Kaur.

Appendices

Appendix 1: Density matrix equations for a five-level system

In this appendix, we discuss density matrix equations for a five-level system. These density matrix equations can be obtained from Eq. (3) by removing the contribution of the transition \(\left| e_{5} \right\rangle \leftrightarrow \left| g \right\rangle\), in Figure 1(a). This will affect the population of the ground state \(\rho _{gg}\) that will have to modify due to the different decay channels in the resulted five-level system Figure 1(b), so it can be written as

$$\begin{aligned} \dot{\rho }_{gg}&=-\,\frac{\rho _{gg}}{\tau _{d}}+\frac{1}{\tau _{d}}+ \frac{b_{e_{1}}}{3}\varGamma _{e_{1}}\rho _{e_{1}e_{1}}+ \frac{b_{e_{2}}}{3}\varGamma _{e_{2}}\rho _{e_{2}e_{2}}+ \frac{b_{e_{3}}}{3}\varGamma _{e_{3}}\rho _{e_{3}e_{3}}+ {b_{e_{4}}}\varGamma _{e_{4}}\rho _{e_{4}e_{4}} \nonumber \\&\quad+\,\frac{i}{2}\displaystyle \sum _{j=1}^3(\varOmega ^{*}_{cge_{j}}\rho _{ge_{j}} - \varOmega _{cge_{j}}\rho _{e_{j}g})+\frac{i}{2}\displaystyle \sum _{k=4}^5(\varOmega ^{*}_{pge_{k}}\rho _{ge_{k}}- \varOmega _{pge_{k}}\rho _{e_{k}g}). \end{aligned}$$
(9)

Appendix 2: Dressed-state analysis

In this appendix, we present semiclassical dressed-state picture for a three-level V-system. Our calculations show that for a case \(\varOmega _{cge_{1}} > \varGamma _{e_{4}}\), we observe the partial transparency window at the zero probe detuning. This can be explained by considering the dressed-state analysis of a three-level V-system. The control field couples the states \(\left| g \right\rangle\) and \(\left| e_{1} \right\rangle\) that create two dressed states \(\left| + \right\rangle\) and \(\left| - \right\rangle\);

$$\left| + \right\rangle=\frac{1}{\sqrt{2}}(\left| e_{1} \right\rangle +\left| g \right\rangle)$$
(10)
$$\left| - \right\rangle=\frac{1}{\sqrt{2}}(\left| e_{1} \right\rangle -\left| g \right\rangle).$$
(11)

The probe absorption is from one of these dressed states to an excited state \(\left| e_{4} \right\rangle\), i.e. there are two transition pathways for probe absorption \(\left| e_{4} \right\rangle \rightarrow \left| + \right\rangle\) and \(\left| e_{4} \right\rangle \rightarrow \left| - \right\rangle\). Due to two pathways, there is interfere between them. The transition amplitude at the (undressed) resonant frequency \(\omega _{e_{4}g}=(E_{e_{4}}-E_{g})/\hbar\), from the excited state \(\left| e_{4} \right\rangle\) to the dressed states will be the sum of the contributions to states \(\left| + \right\rangle\) and \(\left| - \right\rangle\), is given by

$$P\propto \left| \frac{\langle { e_{4} | {\mathbf{d.E }} | + \rangle }}{\varOmega _{cge_{1}}}+\frac{\langle { e_{4} | {\mathbf{d.E }} | - \rangle }}{-\varOmega _{cge_{1}}}\right| ^{2}=\frac{{\varOmega ^{2}_{pge_{4}}}}{\varOmega _{cge_{1}}}.$$
(12)

The transition amplitude is not zero. It means for V-type EIT system, there is a constructive interference between two transition pathways [48] and the probe absorption is enhanced at the zero probe detuning with transition amplitude given by Eq. (12). Due to this reason, we observe only partial transparency window at zero probe detuning for \(\varOmega _{cge_{1}} > \varGamma _{e_{4}}\) case.

Appendix 3: Effect of Doppler shift on susceptibility

In this appendix, we discuss the numerical solution of the imaginary part of susceptibility (\(\rho _{ge_{4}}\)+\(\rho _{ge_{5}}\)) for an atom with the detuning \(\varDelta _{p}\) of the probe field for six-level system with various values of Doppler shift (\(\varDelta _{D}\)).

Our results show that for \(\varDelta _{D}=0\) MHz, there are two transparency windows located at \(\varDelta _{p}=0\) and \(-157\) MHz, as shown in figure 6(a). One of the transparency windows, which is located at \(\varDelta _{p}=-157\) MHz, is due to the level \(e_{5}\). This level \(e_{5}\) is the nearest Zeeman sublevel which is \(-157\) MHz far away from the probe field transition \(\left| g \right\rangle \rightarrow \left| e_{4} \right\rangle\) . When we further increase the Doppler shift, our calculations shows that the shift is negative (red shift) for atoms moving in the same direction as the probe and control fields, and positive (blue shift) for atoms moving opposite to the probe and control fields. It can be seen in figure 6, one of the absorption peaks completely disappear as the Doppler shift increases.

Fig. 6
figure 6

Probe absorption coefficient Im(\(\rho _{ge_{4}}+\rho _{ge_{5}}\)) for atoms as a function of the probe detuning (\(\varDelta _{p}\)) in the weak probe regime with different velocities (a) \(\varDelta _{D} = 0\) MHz, (b) \(\varDelta _{D} = \pm 5\) MHz and (c) \(\varDelta _{D} = \pm 15\) MHz. Solid and dashed curves correspond to the velocity classes with positive Doppler shifts (\(\varDelta _{D}>0\)) and negative Doppler shifts (\(\varDelta _{D}<0\)), respectively. In the present calculations, we take \(\varDelta _{c}=0\) and \(\varOmega _{cge_{1}}=24\) MHz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Bharti, V. & Wasan, A. Optical properties of an inhomogeneously broadened multilevel V-system in the weak and strong probe regimes. Indian J Phys 91, 1115–1125 (2017). https://doi.org/10.1007/s12648-017-1014-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1014-2

Keywords

PACS Nos.

Navigation