Skip to main content
Log in

Extracting squared speed-of-sound parameter from asymmetric nuclear collisions at high energies

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We apply the Landau hydrodynamic model in leading target/projectile nucleons and target/projectile cylinders in the multisource thermal model respectively, in asymmetric nuclear collisions. Each leading nucleon source or cylinder source is regarded as an energy reservoir to emit or produce particles and can be described by the Landau hydrodynamic model. The pseudorapidity distribution of final-state particles is in fact a sum of four Gaussian functions which correspond to the contributions of the leading target nucleons, target cylinder, projectile cylinder and leading projectile nucleons, respectively, in accordance with their central rapidities from low to high value. Based on the descriptions of the pseudorapidity distributions of final-state particles produced in proton-emulsion, deuteron-gold and gold-emulsion collisions, the squared speed-of-sound parameters for the four sources in asymmetric nuclear collisions have been extracted and shown to be approximately the same within the statistical error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L D Landau Collected Papers of L. D. Landau (ed.) D Ter Haar (England: Pergamon Press) p 569 (1965)

    Google Scholar 

  2. S Z Belen’kji and L D Landau Il Nuovo Cimento 3(supplement 1) 15 (1956)

    Article  Google Scholar 

  3. E V Shuryak Yadernaya Fizika 16 395 (1972)

    Google Scholar 

  4. W Florkowski Phenomenology of Ultra-Relativistic Heavy-Hon Collisions (ed.) W Florkowski (Singapore: World Scientific) p 275 (2010)

    Chapter  Google Scholar 

  5. B B Back et al. [PHOBOS collaboration] Phys. Rev. Lett. 87 102303 (2001)

    Article  ADS  Google Scholar 

  6. B B Back et al. [PHOBOS collaboration] Phys. Rev. Lett. 91 052303 (2003)

    Article  ADS  Google Scholar 

  7. I G Bearden et al. [BRAHMS collaboration] Phys. Lett. B523 227 (2001)

    Article  ADS  Google Scholar 

  8. I G Bearden et al. [BRAHMS collaboration] Phys. Rev. Lett. 88 202301 (2002)

    Article  ADS  Google Scholar 

  9. P Steinberg J. Phys.: Conf. Ser. 9 280 (2005)

    ADS  Google Scholar 

  10. P A Steinberg Nucl. Phys. A752 423 (2005)

    Article  ADS  Google Scholar 

  11. P Carruthers and M Duong-Van Phys. Lett. B41 597 (1972)

    Article  ADS  Google Scholar 

  12. P Carruthers and M Duong-Van Phys. Rev. D8 859 (1973)

    Article  ADS  Google Scholar 

  13. C-Y Wong Phys. Rev. C78 054902 (2008)

    Article  ADS  Google Scholar 

  14. L-N Gao, Y-H Chen, H-R Wei and F-H Liu Adv. High Energy Phys. 2013 450247 (2013)

    Article  Google Scholar 

  15. Y-Q Gao, T Tian, L-N Gao and F-H Liu Adv. High Energy Phys. 2014 569079 (2014)

    Google Scholar 

  16. R J Glauber Lectures of Theoretical Physics (ed.) W. E. Brittin and L. G. Dunham (USA: Interscience) Vol. 1, p 315 (1959)

    Google Scholar 

  17. F-H Liu Phys. Lett. B583 68 (2004)

    Article  ADS  Google Scholar 

  18. F-H Liu Phys. Rev. C78 014902 (2008)

    Article  ADS  Google Scholar 

  19. F-H Liu Nucl. Phys. A810 159 (2008)

    Article  ADS  Google Scholar 

  20. I Otterlund et al. Nucl. Phys. B142 445 (1978)

    Article  ADS  Google Scholar 

  21. A Abduzhamilov et al. Phys. Rev. D35 3537 (1987)

    Article  ADS  Google Scholar 

  22. B B Back et al. [PHOBOS collaboration] Phys. Rev. Lett. 93 082301 (2004)

    Article  ADS  Google Scholar 

  23. I Arsene et al. [BRAHMS collaboration] Phys. Rev. Lett. 94 032301 (2005)

    Article  ADS  Google Scholar 

  24. B B Back et al. [PHOBOS collaboration] Phys. Rev. C72 031901 (2005)

    Article  ADS  Google Scholar 

  25. M I Adamovich et al. [EMU01 collaboration] Phys. Lett. B352 472 (1995)

    Article  ADS  Google Scholar 

  26. P Carruthers Ann. N.Y. Acad. Sci. 229 91 (1974)

    Article  ADS  Google Scholar 

  27. M Gazdzicki, M Gorenstein and P Seyboth Acta Phys. Pol. B42 307 (2011)

    Article  Google Scholar 

  28. G A Milekhin Sov. Phys. 35 682 (1959)

    MathSciNet  Google Scholar 

  29. E-Q Wang, Y-H Chen, B-C Li and F-H Liu Indian J. Phys. 87 793 (2013)

    Article  ADS  Google Scholar 

  30. A Tawfik and H Magdy Int. J. Mod. Phys. A29 1450152 (2014)

    Article  Google Scholar 

  31. A Tawfik and T Harko Phys. Rev. D85 084032 (2012)

    Article  ADS  Google Scholar 

  32. J Cleymans and D Worku Mod. Phys. Lett. A26 1197 (2011)

    Article  ADS  Google Scholar 

  33. J Steinheimer and M Bleicher Eur. Phys. J. A48 100 (2012)

    Article  ADS  Google Scholar 

  34. B De Eur. Phys. J. A50 70 (2014)

    Google Scholar 

  35. S Borsányi et al. J. High Energy Phys. 1208 053 (2012)

    Article  ADS  Google Scholar 

  36. L-N Gao and F-H Liu Adv. High Energy Phys. 2015 184713 (2015)

    Google Scholar 

  37. L-N Gao and F-H Liu Adv. High Energy Phys. 2015 641906 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Dr. Swarnapratim Bhattacharyya, Department of Physics, New Alipore College, Kolkata, India for his improvements to the manuscript. This work was supported by the National Natural Science Foundation of China under Grant No. 11575103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-H. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, LN., Liu, FH. Extracting squared speed-of-sound parameter from asymmetric nuclear collisions at high energies. Indian J Phys 90, 1277–1283 (2016). https://doi.org/10.1007/s12648-016-0849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0849-2

Keywords

PACS Nos.

Navigation